Charge separation in molecular compounds from the charge transfer states: density matrix approach

Classical and quantum models explaining fast charge separation from the initially excited charge transfer (CT) states is presented in this paper. According to our suggestion a substantial dipole moment is localized in the CT complex after its optical excitation. Being a strong local perturbation this electronic dipole induces the changes in the equilibrium positions of atoms and molecules in the vicinity of its surrounding. Some under-damped vibrational modes of the extended phonons at the very initial times can create the driving force for the charge transfer via the feedback of the nonrelaxed environment. This model is demonstrated in the framework of the modified Marcus approach and by using a quantum model.