Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing
暂无分享,去创建一个
[1] P. Lions. AXIOMATIC DERIVATION OF IMAGE PROCESSING MODELS , 1994 .
[2] Chia-Jung Hsu. Numerical Heat Transfer and Fluid Flow , 1981 .
[3] K. Mikula,et al. A coarsening finite element strategy in image selective smoothing , 1997 .
[4] Karol Mikula,et al. Slowed Anisotropic Diffusion , 1997, Scale-Space.
[5] P. Lions,et al. Axioms and fundamental equations of image processing , 1993 .
[6] Niklas Nordström. Biased Anisotropic Diffusion - A Unified Regularization and Diffusion Approach to Edge Detection , 1990, ECCV.
[7] J. Kacur,et al. Slow and fast diffusion effects in image processing , 2001 .
[8] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[9] Luis Alvarez,et al. Formalization and computational aspects of image analysis , 1994, Acta Numerica.
[10] H. Brezis. Analyse fonctionnelle : théorie et applications , 1983 .
[11] J. Kacur,et al. Solution of nonlinear diffusion appearing in image smoothing and edge detection , 1995 .
[12] Jitendra Malik,et al. Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[13] Max A. Viergever,et al. Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..
[14] Bart M. ter Haar Romeny,et al. Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.
[15] P. Lions,et al. Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .