Genome-wide association analyses identify 44 risk variants and refine the genetic architecture ofmajor depressive disorder

Statistical analysis. In each cohort, logistic regression association tests were conducted for imputed marker dosages with principal components covariates to control for population stratification. Ancestry was evaluated using principal components analysis applied to directly genotyped SNPs. 99 In the anchor cohorts and GERA, we determined that all individuals in the final analyses were of European ancestry. European ancestry was confirmed in the other expanded cohorts by the collaborating research teams using similar procedures. We tested 20 principal components for association with MDD and included five principal components covariates for the anchor cohorts and GERA (all other cohorts adopted similar strategies). There was no evidence of stratification artifacts or uncontrolled test statistic inflation in the results from each anchor and extended cohort (e.g., l GC was 0.995–1.043 in the anchor cohorts). The results were combined across samples using an inverse-weighted fixed effects model. 100 Reported SNPs have imputation marker INF O score ≥ 0.6 and allele frequencies ≥0.01 and ≤0.99, and effective sample size equivalent to > 100,000 cases. For all cohorts, X-chromosome association results were conducted separately by sex, and then meta-analysed across sexes. 22 For two cohorts (GenScot and UKBB), we first conducted association analysis for genotyped SNPs by sex, then imputed association results using LD from the 1000 Genomes reference sample. 101

Li | Katharina | Warren W. Kretzschmar | Robert M. Maier | N. Eriksson | P. Visscher | N. Wray | A. Uitterlinden | I. Deary | E. Mihailov | J. Marchini | J. Lane | H. Stefánsson | S. Cichon | S. Steinberg | T. Thorgeirsson | M. Rietschel | T. Werge | M. Nöthen | K. Stefánsson | J. Potash | T. Schulze | M. Gill | N. Craddock | M. Owen | P. Sullivan | K. Tansey | Jianxin Shi | Z. Kutalik | A. Beekman | M. Weissman | G. Breen | P. McGuffin | C. Lewis | I. Kohane | H. Völzke | Yunpeng Wang | W. Thompson | D. Hinds | S. Purcell | S. Mostafavi | W. Maier | J. Smoller | N. Martin | G. Crawford | A. McIntosh | M. Preisig | B. Penninx | V. Arolt | G. Willemsen | A. Metspalu | T. Esko | G. Montgomery | L. Milani | D. Blackwood | J. Knowles | Yun Li | D. Mehta | J. Wellmann | U. Dannlowski | B. Baune | K. Kendler | D. Posthuma | D. Boomsma | R. Perlis | P. McGrath | D. Porteous | D. Levinson | S. Paciga | D. Nyholt | J. Hottenga | P. Magnusson | N. Pedersen | J. Smit | G. Lewis | H. Gaspar | Ming Hu | Fulai Jin | A. Winslow | S. Bacanu | O. Mors | R. Uher | E. Derks | P. Mortensen | A. Børglum | M. Nordentoft | M. Mattheisen | H. Grabe | G. Homuth | A. Teumer | S. Medland | B. Müller-Myhsok | J. Bryois | S. Ripke | H. Xi | A. Abdellaoui | D. Umbricht | B. Riley | S. Hamilton | G. Davies | Jian Yang | E. D. Geus | C. Hayward | P. Lind | W. Peyrot | K. Berger | P. Madden | Danny J. Smith | B. Webb | T. Andlauer | J. Grove | C. Schaefer | E. Domenici | E. Binder | F. Goes | C. Dolan | H. Finucane | B. Couvy-Duchesne | M. Nauck | P. Hoffmann | S. Gordon | Yang Wu | H. Mbarek | R. Jansen | C. Middeldorp | R. Maier | E. Agerbo | J. Bybjerg-Grauholm | M. Bækvad-Hansen | C. Hansen | C. Pedersen | M. Pedersen | V. Escott-Price | L. Hall | T. Eley | J. Painter | L. Colodro-Conde | S. Witt | F. Degenhardt | A. Forstner | S. Herms | H. Dashti | Futao Zhang | J. Coleman | C. Tian | M. Adams | D. Macintyre | N. Mullins | G. Pistis | P. Thomson | H. Teismann | D. MacKinnon | F. Mondimore | J. R. DePaulo | T. Bigdeli | T. Clarke | M. Nivard | L. Shen | Cheynna A. Crowley | J. Christensen | P. Qvist | P. Giusti-Rodríguez | F. Streit | C. Stockmeier | J. Treutlein | M. Trzaskowski | S. Qingqin | J. Strohmaier | S. Lucae | H. Oskarsson | J. Frank | T. Hansen | M. Ising | Stanley I. Shyn | N. Direk | B. Ng | O'donovan | Jorgenson | G. Sinnamon | R. Peterson | S. Kloiber | C. Hyde | S. Mirza | Dunn | T. Air | H. Buttenschøn | A. Viktorin | N. Cai | E. Castelao | Carsten Horn | J. Kraft | J. Krogh | Yihan Li | Xiaoxiao Liu | Leina Lu | E. Pettersson | J. Quiroz | M. Rivera | E. Schulte | M. Traylor | V. Trubetskoy | Rice | A. M. Hemert | Schoevers | Eric | Andrew | F. Paul | Robert | W. Kretzschmar | Domschke | Byrne | C. Heath | R. Saxena | C. Michael | Sigurdsson | Yuri | Hougaard | Engilbert | O'Reilly | Na Cai | S. Auwera | M. Enda | C. Erin | Farnush Farhadi Hassan | Kiadeh | B. Ian | Hickie | M. David | Milaneschi | P. John | S. Marie | Weinsheimer | Paola Giusti-Rodríguez | A. Uitterlinden | S. Gordon | D. Boomsma | Héléna A. Gaspar | Grant C. B. Sinnamon | N. Martin | Toni‐Kim Clarke | Roseann E. Peterson | N. Martin | Marie Bækvad-Hansen | N. Martin | C. Lewis

[1]  Timothy E. Reddy,et al.  Evaluation of Chromatin Accessibility in Prefrontal Cortex of Schizophrenia Cases and Controls , 2017, bioRxiv.

[2]  Fred A. Wright,et al.  Conditional eQTL analysis reveals allelic heterogeneity of gene expression , 2017, Human molecular genetics.

[3]  Zheng Xu,et al.  HUGIn: Hi-C Unifying Genomic Interrogator , 2017, bioRxiv.

[4]  John P. Rice,et al.  Genetic effects influencing risk for major depressive disorder in China and Europe , 2017, Translational Psychiatry.

[5]  Blair H. Smith,et al.  Genome-wide Association for Major Depression Through Age at Onset Strati fi cation: Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium , 2016 .

[6]  G. Breen,et al.  Using Clinical Characteristics to Identify Which Patients With Major Depressive Disorder Have a Higher Genetic Load for Three Psychiatric Disorders , 2017, Biological Psychiatry.

[7]  J. Flint,et al.  The Genetic Architecture of Major Depressive Disorder in Han Chinese Women , 2017, JAMA psychiatry.

[8]  Evan Z. Macosko,et al.  Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types , 2017, Nature Genetics.

[9]  A. Hofman,et al.  Identification of context-dependent expression quantitative trait loci in whole blood , 2016, Nature Genetics.

[10]  G. Breen,et al.  Pathways analyses of schizophrenia GWAS focusing on known and novel drug targets , 2016, bioRxiv.

[11]  Alessandro Bertolino,et al.  Translating genome-wide association findings into new therapeutics for psychiatry , 2016, Nature Neuroscience.

[12]  Daning Lu,et al.  Chromosome conformation elucidates regulatory relationships in developing human brain , 2016, Nature.

[13]  Raphael A. Bernier,et al.  denovo-db: a compendium of human de novo variants , 2016, Nucleic Acids Res..

[14]  David M. Evans,et al.  A Genome-Wide Association Meta-Analysis of Attention-Deficit/Hyperactivity Disorder Symptoms in Population-Based Pediatric Cohorts. , 2016, Journal of the American Academy of Child and Adolescent Psychiatry.

[15]  Giulio Genovese,et al.  Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia , 2016, Nature Neuroscience.

[16]  Peter V. Kharchenko,et al.  Cell-Type-Specific Alternative Splicing Governs Cell Fate in the Developing Cerebral Cortex , 2016, Cell.

[17]  Brielin C. Brown,et al.  Transethnic genetic correlation estimates from summary statistics , 2016, bioRxiv.

[18]  D. Hinds,et al.  Identification of 15 genetic loci associated with risk of major depression in individuals of European descent , 2016, Nature Genetics.

[19]  Daniel J. Whitcomb,et al.  SALM5 trans-synaptically interacts with LAR-RPTPs in a splicing-dependent manner to regulate synapse development , 2016, Scientific Reports.

[20]  Wenli Liu,et al.  Olfactomedin 4 expression and functions in innate immunity, inflammation, and cancer , 2016, Cancer and Metastasis Reviews.

[21]  Benjamin A. Logsdon,et al.  Gene Expression Elucidates Functional Impact of Polygenic Risk for Schizophrenia , 2016, Nature Neuroscience.

[22]  Lachlan T. Strike,et al.  Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group , 2016, Molecular Psychiatry.

[23]  Tom R. Gaunt,et al.  LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis , 2016, bioRxiv.

[24]  J. Potash,et al.  High-throughput sequencing of the synaptome in major depressive disorder , 2016, Molecular Psychiatry.

[25]  Jonathan P. Beauchamp,et al.  Genetic variants associated with subjective well-being, depressive symptoms and neuroticism identified through genome-wide analyses , 2016, Nature Genetics.

[26]  T. Heskes,et al.  The statistical properties of gene-set analysis , 2016, Nature Reviews Genetics.

[27]  Jonathan Scott Friedlaender,et al.  Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals , 2016, Science.

[28]  G. Zhu,et al.  Neuron-specific SALM5 limits inflammation in the CNS via its interaction with HVEM , 2016, Science Advances.

[29]  Jonathan P. Beauchamp,et al.  Genome-wide association study identifies 74 loci associated with educational attainment , 2016, Nature.

[30]  P. Visscher,et al.  Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets , 2016, Nature Genetics.

[31]  C. Spencer,et al.  A contribution of novel CNVs to schizophrenia from a genome-wide study of 41,321 subjects: CNV Analysis Group and the Schizophrenia Working Group of the Psychiatric Genomics Consortium , 2016, bioRxiv.

[32]  Gerard Tromp,et al.  The phenotypic legacy of admixture between modern humans and Neandertals , 2016, Science.

[33]  Gloria M. Sheynkman,et al.  Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing , 2016, Cell.

[34]  Y. J. Kim,et al.  Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes , 2016, Nature Communications.

[35]  F. Pischedda,et al.  The IgLON Family Member Negr1 Promotes Neuronal Arborization Acting as Soluble Factor via FGFR2 , 2016, Front. Mol. Neurosci..

[36]  D. Geschwind,et al.  Cytoplasmic Rbfox1 Regulates the Expression of Synaptic and Autism-Related Genes , 2016, Neuron.

[37]  Anbupalam Thalamuthu,et al.  Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof-of-concept and roadmap for future studies , 2016, Nature Neuroscience.

[38]  Michael J. Purcaro,et al.  The PsychENCODE project , 2015, Nature Neuroscience.

[39]  Deng Pan,et al.  DGIdb 2.0: mining clinically relevant drug–gene interactions , 2015, Nucleic Acids Res..

[40]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[41]  Jakob Grove,et al.  Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population , 2015, Nature Genetics.

[42]  P. Sullivan,et al.  Heritability of Perinatal Depression and Genetic Overlap With Nonperinatal Depression. , 2015, The American journal of psychiatry.

[43]  T. Lehtimäki,et al.  Integrative approaches for large-scale transcriptome-wide association studies , 2015, Nature Genetics.

[44]  Judy H. Cho,et al.  Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations , 2015, Nature Genetics.

[45]  Warren W. Kretzschmar,et al.  Sparse whole genome sequencing identifies two loci for major depressive disorder , 2015, Nature.

[46]  G. Kempermann Faculty Opinions recommendation of Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. , 2015 .

[47]  M. Daly,et al.  An Atlas of Genetic Correlations across Human Diseases and Traits , 2015, Nature Genetics.

[48]  G. Davey Smith,et al.  Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression , 2015, International journal of epidemiology.

[49]  Joris M. Mooij,et al.  MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..

[50]  Ross M. Fraser,et al.  Genetic studies of body mass index yield new insights for obesity biology , 2015, Nature.

[51]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[52]  Han Xu,et al.  Partitioning heritability by functional category using GWAS summary statistics , 2015, bioRxiv.

[53]  Laura J. Scott,et al.  Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways , 2015, Nature Neuroscience.

[54]  A. Fournier,et al.  IgLON Cell Adhesion Molecules Are Shed from the Cell Surface of Cortical Neurons to Promote Neuronal Growth* , 2014, The Journal of Biological Chemistry.

[55]  Christopher S. Poultney,et al.  Synaptic, transcriptional, and chromatin genes disrupted in autism , 2014, Nature.

[56]  Robert M. Maier,et al.  Genetic Basis of Complex Genetic Disease: The Contribution of Disease Heterogeneity to Missing Heritability , 2014, Current Epidemiology Reports.

[57]  Helen Lindsay,et al.  Age-Dependent Transcriptome and Proteome Following Transection of Neonatal Spinal Cord of Monodelphis domestica (South American Grey Short-Tailed Opossum) , 2014, PloS one.

[58]  Anirvan Ghosh,et al.  LPHN3, a presynaptic adhesion-GPCR implicated in ADHD, regulates the strength of neocortical layer 2/3 synaptic input to layer 5 , 2014, Neural Development.

[59]  N. Cox,et al.  Obesity-associated variants within FTO form long-range functional connections with IRX3 , 2014, Nature.

[60]  R. Anholt Olfactomedin proteins: central players in development and disease , 2014, Front. Cell Dev. Biol..

[61]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[62]  M. Francolini,et al.  A Cell Surface Biotinylation Assay to Reveal Membrane-associated Neuronal Cues: Negr1 Regulates Dendritic Arborization* , 2013, Molecular & Cellular Proteomics.

[63]  G. Freedman,et al.  Burden of Depressive Disorders by Country, Sex, Age, and Year: Findings from the Global Burden of Disease Study 2010 , 2013, PLoS medicine.

[64]  Pedro G. Ferreira,et al.  Transcriptome and genome sequencing uncovers functional variation in humans , 2013, Nature.

[65]  Jianxin Shi,et al.  Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs , 2013, Nature Genetics.

[66]  Jun Li,et al.  Polygenic transmission and complex neuro developmental network for attention deficit hyperactivity disorder: Genome‐wide association study of both common and rare variants , 2013, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[67]  Christian Gieger,et al.  Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture , 2013, Nature Genetics.

[68]  Inês Barroso,et al.  Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity , 2013, Nature Genetics.

[69]  Peter Kraft,et al.  A Genome-Wide Association Study of Depressive Symptoms , 2013, Biological Psychiatry.

[70]  R. Kessler,et al.  The epidemiology of depression across cultures. , 2013, Annual review of public health.

[71]  R. Adan,et al.  Nutritional State Affects the Expression of the Obesity‐Associated Genes Etv5, Faim2, Fto, and Negr1 , 2012, Obesity.

[72]  Disorder Working Group Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4 , 2012, Nature Genetics.

[73]  Roger D. Cox,et al.  Functional Inactivation of the Genome-Wide Association Study Obesity Gene Neuronal Growth Regulator 1 in Mice Causes a Body Mass Phenotype , 2012, PloS one.

[74]  Neelroop Parikshak,et al.  RBFOX1 regulates both splicing and transcriptional networks in human neuronal development. , 2012, Human molecular genetics.

[75]  M. Marazita,et al.  Genome-wide Association Studies , 2012, Journal of dental research.

[76]  P. Visscher,et al.  Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits , 2012, Nature Genetics.

[77]  Inês Barroso,et al.  A genome-wide association meta-analysis identifies new childhood obesity loci , 2012, Nature Genetics.

[78]  Y. Sztainberg,et al.  Homeodomain Protein Otp and Activity-Dependent Splicing Modulate Neuronal Adaptation to Stress , 2012, Neuron.

[79]  G. Tseng,et al.  Comprehensive literature review and statistical considerations for GWAS meta-analysis , 2012, Nucleic acids research.

[80]  T. Südhof,et al.  High Affinity Neurexin Binding to Cell Adhesion G-protein-coupled Receptor CIRL1/Latrophilin-1 Produces an Intercellular Adhesion Complex , 2012, The Journal of Biological Chemistry.

[81]  P. Visscher,et al.  Five years of GWAS discovery. , 2012, American journal of human genetics.

[82]  I. Ellis,et al.  Differential oestrogen receptor binding is associated with clinical outcome in breast cancer , 2011, Nature.

[83]  Albert J. Vilella,et al.  A high-resolution map of human evolutionary constraint using 29 mammals , 2011, Nature.

[84]  J. Os,et al.  The size and burden of mental disorders and other disorders of the brain in Europe 2010 , 2011, European Neuropsychopharmacology.

[85]  Istvan Mody,et al.  The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain , 2011, Nature Genetics.

[86]  Raymond K. Auerbach,et al.  A User's Guide to the Encyclopedia of DNA Elements (ENCODE) , 2011, PLoS biology.

[87]  G. Wagner,et al.  The pleiotropic structure of the genotype–phenotype map: the evolvability of complex organisms , 2011, Nature Reviews Genetics.

[88]  N. Wray,et al.  Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned , 2010, Molecular Psychiatry.

[89]  D. Altshuler,et al.  A map of human genome variation from population-scale sequencing , 2010, Nature.

[90]  J. Rice,et al.  The Internet-based MGS2 control sample: self report of mental illness. , 2010, The American journal of psychiatry.

[91]  Eunjoon Kim,et al.  Selected SALM (Synaptic Adhesion-Like Molecule) Family Proteins Regulate Synapse Formation , 2010, The Journal of Neuroscience.

[92]  S. Maekawa,et al.  IgLON cell adhesion molecules regulate synaptogenesis in hippocampal neurons , 2009, Cell biochemistry and function.

[93]  A. Wise Body weight regulation. , 2009, Nutrition reviews.

[94]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[95]  Stafford L. Lightman,et al.  The HPA axis in major depression: classical theories and new developments , 2008, Trends in Neurosciences.

[96]  S. Maekawa,et al.  IgLON cell adhesion molecule Kilon is a crucial modulator for synapse number in hippocampal neurons , 2008, Brain Research.

[97]  Y. Xing,et al.  A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function , 2008, The Journal of Neuroscience.

[98]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[99]  Nathalie Boddaert,et al.  Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. , 2007, American journal of human genetics.

[100]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[101]  Alan D. Lopez,et al.  Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data , 2006, The Lancet.

[102]  B. Grant,et al.  Epidemiology of major depressive disorder: results from the National Epidemiologic Survey on Alcoholism and Related Conditions. , 2005, Archives of general psychiatry.

[103]  T. Brümmendorf,et al.  Neurotractin/kilon promotes neurite outgrowth and is expressed on reactive astrocytes after entorhinal cortex lesion , 2005, Molecular and Cellular Neuroscience.

[104]  K. Kendler,et al.  The structure of genetic and environmental risk factors for common psychiatric and substance use disorders in men and women. , 2003, Archives of general psychiatry.

[105]  Olga V. Demler,et al.  The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). , 2003, JAMA.

[106]  S. Ebrahim,et al.  'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? , 2003, International journal of epidemiology.

[107]  H. Stassen,et al.  Mortality of patients with mood disorders: follow-up over 34-38 years. , 2002, Journal of affective disorders.

[108]  P. Sullivan,et al.  Genetic epidemiology of major depression: review and meta-analysis. , 2000, The American journal of psychiatry.

[109]  B. Roth,et al.  The Multiplicity of Serotonin Receptors: Uselessly Diverse Molecules or an Embarrassment of Riches? , 2000 .

[110]  Jeffrey M. Wooldridge,et al.  Introductory Econometrics: A Modern Approach , 1999 .

[111]  L. Judd The clinical course of unipolar major depressive disorders. , 1997, Archives of general psychiatry.

[112]  J. Rabe-Jabłońska,et al.  [Affective disorders in the fourth edition of the classification of mental disorders prepared by the American Psychiatric Association -- diagnostic and statistical manual of mental disorders]. , 1993, Psychiatria polska.

[113]  R E Kendell,et al.  The Classification of Depressions: A Review of Contemporary Confusion , 1976, British Journal of Psychiatry.

[114]  Gerome Breen,et al.  Psychiatric Genomics: An Update and an Agenda , 2017, bioRxiv.

[115]  N. Wray,et al.  Genetic studies of major depressive disorder: Why are there no GWAS findings, and what can we do about it? , 2016 .

[116]  Kwangsik Nho,et al.  Comprehensive gene- and pathway-based analysis of depressive symptoms in older adults. , 2015, Journal of Alzheimer's disease : JAD.

[117]  J. Mesirov,et al.  The Molecular Signatures Database (MSigDB) hallmark gene set collection. , 2015, Cell systems.

[118]  K. Kendler,et al.  The structure of genetic and environmental risk factors for syndromal and subsyndromal common DSM-IV axis I and all axis II disorders. , 2011, The American journal of psychiatry.

[119]  Tanya M. Teslovich,et al.  Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index , 2010 .

[120]  Christian Gieger,et al.  Six new loci associated with body mass index highlight a neuronal influence on body weight regulation , 2009, Nature Genetics.

[121]  Ellen Kampman,et al.  Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity , 2009, Nature Genetics.

[122]  M. De Hert,et al.  Cost of disorders of the brain in Europe. , 2006, European journal of neurology.

[123]  F. Rice,et al.  The genetic aetiology of childhood depression: a review. , 2002, Journal of child psychology and psychiatry, and allied disciplines.

[124]  F. Sebening,et al.  [Coronary artery disease]. , 1980, Verhandlungen der Deutschen Gesellschaft fur Herz- und Kreislaufforschung.