Clonal dynamics of haematopoiesis across the human lifespan

[1]  J. Blundell,et al.  Synonymous mutations reveal genome-wide levels of positive selection in healthy tissues , 2021, Nature Genetics.

[2]  Stanley W. K. Ng,et al.  Convergent somatic mutations in metabolism genes in chronic liver disease , 2021, Nature.

[3]  R. van Boxtel,et al.  Antiviral treatment causes a unique mutational signature in cancers of transplantation recipients , 2021, Cell stem cell.

[4]  M. Stratton,et al.  Extensive phylogenies of human development inferred from somatic mutations , 2021, Nature.

[5]  P. Campbell,et al.  The longitudinal dynamics and natural history of clonal haematopoiesis , 2021, Nature.

[6]  S. Dawson,et al.  HIV is associated with an increased risk of age-related clonal hematopoiesis among older adults , 2021, Nature Medicine.

[7]  Matthew S. Lebo,et al.  Hematopoietic mosaic chromosomal alterations increase the risk for diverse types of infection , 2021, Nature Medicine.

[8]  P. Campbell,et al.  Lineage tracing of human development through somatic mutations , 2021, Nature.

[9]  Christopher A. Miller,et al.  Genome Sequencing as an Alternative to Cytogenetic Analysis in Myeloid Cancers. , 2021, The New England journal of medicine.

[10]  Johannes G. Reiter,et al.  Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis , 2021, Cell.

[11]  L. Moore Abstract IA007: The mutational landscape of normal human endometrial epithelium , 2021, Functional Genomics and Proteomics.

[12]  Inigo Martincorena,et al.  Reliable detection of somatic mutations in solid tissues by laser-capture microdissection and low-input DNA sequencing , 2020, Nature Protocols.

[13]  P. Campbell,et al.  Phylogenetic reconstruction of myeloproliferative neoplasm reveals very early origins and lifelong evolution , 2020, bioRxiv.

[14]  Stuart M. Gardos,et al.  Cancer therapy shapes the fitness landscape of clonal hematopoiesis , 2020, Nature Genetics.

[15]  A. Gonzalez-Perez,et al.  Discovering the drivers of clonal hematopoiesis , 2020, Nature Communications.

[16]  J. Fowler,et al.  Selection of oncogenic mutant clones in normal human skin varies with body site. , 2020, Cancer discovery.

[17]  D. S. Fisher,et al.  Synonymous mutations reveal genome-wide driver mutation rates in healthy tissues , 2020, bioRxiv.

[18]  S. Morrison,et al.  Hematopoietic stem cells self-renew symmetrically or gradually proceed to differentiation , 2020, bioRxiv.

[19]  T. Holland-Letz,et al.  Hematopoietic stem cells fail to regenerate following inflammatory challenge , 2020, bioRxiv.

[20]  J. Vijg,et al.  Pathogenic Mechanisms of Somatic Mutation and Genome Mosaicism in Aging , 2020, Cell.

[21]  W. Tapper,et al.  Clonal myelopoiesis in the UK Biobank cohort: ASXL1 mutations are strongly associated with smoking , 2020, Leukemia.

[22]  T. Druley,et al.  The evolutionary dynamics and fitness landscape of clonal hematopoiesis , 2020, Science.

[23]  Rafael C. Schulman,et al.  DNA methylation disruption reshapes the hematopoietic differentiation landscape , 2020, Nature Genetics.

[24]  Jun Yu,et al.  Analyses of non-coding somatic drivers in 2,658 cancer whole genomes , 2020, Nature.

[25]  D. Kent,et al.  Tracking hematopoietic stem cells and their progeny using whole-genome sequencing , 2020, Experimental hematology.

[26]  M. Stratton,et al.  Tobacco exposure and somatic mutations in normal human bronchial epithelium , 2019, Nature.

[27]  J. Dumanski,et al.  Longitudinal changes in the frequency of mosaic chromosome Y loss in peripheral blood cells of aging men varies profoundly between individuals , 2019, European Journal of Human Genetics.

[28]  S. McKinney-Freeman,et al.  The global clonal complexity of the murine blood system declines throughout life and after serial transplantation. , 2019, Blood.

[29]  S. Tsunoda,et al.  Age-related remodelling of oesophageal epithelia by mutated cancer drivers , 2019, Nature.

[30]  Peter J. Campbell,et al.  Somatic mutant clones colonize the human esophagus with age , 2018, Science.

[31]  F. Camargo,et al.  Somatic Mutations Reveal Lineage Relationships and Age-Related Mutagenesis in Human Hematopoiesis , 2018, Cell reports.

[32]  Berthold Göttgens,et al.  Myelo-lymphoid lineage restriction occurs in the human haematopoietic stem cell compartment before lymphoid-primed multipotent progenitors , 2018, Nature Communications.

[33]  A. Lynch,et al.  Publisher Correction: Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data , 2018, Scientific Reports.

[34]  M. Stratton,et al.  Population dynamics of normal human blood inferred from somatic mutations , 2018, Nature.

[35]  K. Yoshihara,et al.  Clonal Expansion and Diversification of Cancer-Associated Mutations in Endometriosis and Normal Endometrium. , 2018, Cell reports.

[36]  Paolo Vineis,et al.  Prediction of acute myeloid leukaemia risk in healthy individuals , 2018, Nature.

[37]  Chuang Tan,et al.  Universal Patterns of Selection in Cancer and Somatic Tissues , 2018, Cell.

[38]  Ville Mustonen,et al.  The repertoire of mutational signatures in human cancer , 2018, Nature.

[39]  B. Göttgens,et al.  UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs , 2018, Nature Genetics.

[40]  Wei Li,et al.  Loss of Dnmt3a Immortalizes Hematopoietic Stem Cells In Vivo , 2018, Cell reports.

[41]  Chuanfeng Wu,et al.  The impact of aging on primate hematopoiesis as interrogated by clonal tracking. , 2018, Blood.

[42]  A. von Haeseler,et al.  MPBoot: fast phylogenetic maximum parsimony tree inference and bootstrap approximation , 2018, BMC Evolutionary Biology.

[43]  G. de Haan,et al.  Aging of hematopoietic stem cells. , 2018, Blood.

[44]  Christopher A. Miller,et al.  Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential , 2018, Nature Communications.

[45]  Kari Stefansson,et al.  Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. , 2017, Blood.

[46]  Sri V. V. Deevi,et al.  Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data , 2017, Scientific Reports.

[47]  Daniel L. Cameron,et al.  GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly , 2017, bioRxiv.

[48]  Charles P. Lin,et al.  Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance , 2016, Science.

[49]  David Jones,et al.  cgpCaVEManWrapper: Simple Execution of CaVEMan in Order to Detect Somatic Single Nucleotide Variants in NGS Data , 2016, Current protocols in bioinformatics.

[50]  Michael D. Karcher,et al.  phylodyn: an R package for phylodynamic simulation and inference , 2016, Molecular ecology resources.

[51]  K. Moore,et al.  Hematopoietic Stem Cells Count and Remember Self-Renewal Divisions , 2016, Cell.

[52]  Ingo Roeder,et al.  The bulk of the hematopoietic stem cell population is dispensable for murine steady-state and stress hematopoiesis. , 2016, Blood.

[53]  T. Druley,et al.  Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults , 2016, Nature Communications.

[54]  Cyrille F. Dunant,et al.  Distinct routes of lineage development reshape the human blood hierarchy across ontogeny , 2016, Science.

[55]  P. Ng,et al.  SIFT missense predictions for genomes , 2015, Nature Protocols.

[56]  Keiran M Raine,et al.  cgpPindel: Identifying Somatically Acquired Insertion and Deletion Events from Paired End Sequencing , 2015, Current protocols in bioinformatics.

[57]  Heather D. Huntsman,et al.  Human hematopoietic stem cells from mobilized peripheral blood can be purified based on CD49f integrin expression. , 2015, Blood.

[58]  Christopher A. Miller,et al.  Association Between Mutation Clearance After Induction Therapy and Outcomes in Acute Myeloid Leukemia. , 2015, JAMA.

[59]  M. Stratton,et al.  High burden and pervasive positive selection of somatic mutations in normal human skin , 2015, Science.

[60]  Jian-Bing Fan,et al.  CDK6 Levels Regulate Quiescence Exit in Human Hematopoietic Stem Cells , 2015, Cell stem cell.

[61]  E. Zeggini,et al.  Leukemia-Associated Somatic Mutations Drive Distinct Patterns of Age-Related Clonal Hemopoiesis , 2015, Cell reports.

[62]  Tim Holland-Letz,et al.  Fundamental properties of unperturbed haematopoiesis from stem cells in vivo , 2015, Nature.

[63]  M. McCarthy,et al.  Age-related clonal hematopoiesis associated with adverse outcomes. , 2014, The New England journal of medicine.

[64]  Babak Shahbaba,et al.  An efficient Bayesian inference framework for coalescent-based nonparametric phylodynamics , 2014, Bioinform..

[65]  S. Gabriel,et al.  Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. , 2014, The New England journal of medicine.

[66]  Joshua F. McMichael,et al.  Age-related cancer mutations associated with clonal hematopoietic expansion , 2014, Nature Medicine.

[67]  Allon M. Klein,et al.  Clonal dynamics of native haematopoiesis , 2014, Nature.

[68]  M. L. Beau,et al.  Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells , 2014, Nature.

[69]  Lincoln D. Stein,et al.  Identification of pre-leukemic hematopoietic stem cells in acute leukemia , 2014, Nature.

[70]  J. Vaupel,et al.  Diversity of ageing across the tree of life , 2013, Nature.

[71]  S. Horvath DNA methylation age of human tissues and cell types , 2013, Genome Biology.

[72]  L. Partridge,et al.  The Hallmarks of Aging , 2013, Cell.

[73]  Benjamin J. Raphael,et al.  Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. , 2013, The New England journal of medicine.

[74]  Neil Young,et al.  After the gold rush , 2013, Genome Biology.

[75]  I. Adzhubei,et al.  Predicting Functional Effect of Human Missense Mutations Using PolyPhen‐2 , 2013, Current protocols in human genetics.

[76]  E. Blackburn,et al.  The telomere syndromes , 2012, Nature Reviews Genetics.

[77]  Mithat Gonen,et al.  Recurrent Somatic TET2 Mutations in Normal Elderly Individuals With Clonal Hematopoiesis , 2012, Nature Genetics.

[78]  Joshua F. McMichael,et al.  The Origin and Evolution of Mutations in Acute Myeloid Leukemia , 2012, Cell.

[79]  P. Lansdorp,et al.  Collapse of Telomere Homeostasis in Hematopoietic Cells Caused by Heterozygous Mutations in Telomerase Genes , 2012, PLoS genetics.

[80]  S. Olthof,et al.  Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells , 2011, The Journal of experimental medicine.

[81]  T. Kirkwood,et al.  On the Programmed/Non-Programmed Nature of Ageing within the Life History , 2011, Current Biology.

[82]  Igor Jurisica,et al.  Isolation of Single Human Hematopoietic Stem Cells Capable of Long-Term Multilineage Engraftment , 2011, Science.

[83]  Katalin Csill'ery,et al.  abc: an R package for approximate Bayesian computation (ABC) , 2011, 1106.2793.

[84]  P. Guttorp,et al.  The replication rate of human hematopoietic stem cells in vivo. , 2011, Blood.

[85]  F. Muntoni,et al.  Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. , 2010, The Journal of clinical investigation.

[86]  C. Perou,et al.  Allele-specific copy number analysis of tumors , 2010, Proceedings of the National Academy of Sciences.

[87]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[88]  Margaret A. Strong,et al.  Short telomeres are sufficient to cause the degenerative defects associated with aging. , 2009, American journal of human genetics.

[89]  R. Pfeiffer,et al.  Risks of myeloid malignancies in patients with autoimmune conditions , 2009, British Journal of Cancer.

[90]  Andreas Trumpp,et al.  Hematopoietic Stem Cells Reversibly Switch from Dormancy to Self-Renewal during Homeostasis and Repair , 2008, Cell.

[91]  Antony V. Cox,et al.  Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing , 2008, Nature Genetics.

[92]  T. Kouzarides Chromatin Modifications and Their Function , 2007, Cell.

[93]  M. Stratton,et al.  Statistical Analysis of Pathogenicity of Somatic Mutations in Cancer , 2006, Genetics.

[94]  Ryan D. Edwards,et al.  Inequality in Life Spans and a New Perspective on Mortality Convergence Across Industrialized Countries , 2005 .

[95]  I. Weissman,et al.  Cell intrinsic alterations underlie hematopoietic stem cell aging. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[96]  Luigi Ferrucci,et al.  Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. , 2004, Blood.

[97]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[98]  H. Nakauchi,et al.  Age-Associated Characteristics of Murine Hematopoietic Stem Cells , 2000, The Journal of experimental medicine.

[99]  S. Castle,et al.  Clinical relevance of age-related immune dysfunction. , 2000, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[100]  Nathalie Rufer,et al.  Telomere Fluorescence Measurements in Granulocytes and T Lymphocyte Subsets Point to a High Turnover of Hematopoietic Stem Cells and Memory T Cells in Early Childhood , 1999, The Journal of experimental medicine.

[101]  E. Blackburn,et al.  The rate of telomere sequence loss in human leukocytes varies with age. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[102]  I. Weissman,et al.  The aging of hematopoietic stem cells , 1996, Nature Medicine.

[103]  C B Harley,et al.  Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[104]  M. Nei,et al.  Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. , 1986, Molecular biology and evolution.

[105]  D. Harrison,et al.  Loss of stem cell repopulating ability upon transplantation. Effects of donor age, cell number, and transplantation procedure , 1982, The Journal of experimental medicine.

[106]  Trevor J Pugh,et al.  Mutational heterogeneity in cancer and the search for new cancer genes , 2014 .

[107]  Rudolf Jaenisch,et al.  Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells , 2009, Nature Biotechnology.

[108]  F. M. Burnet INTRINSIC MUTAGENESIS: A GENETIC BASIS OF AGEING , 1974, Pathology.