Laguerre-type special functions and population dynamics

Abstract We introduce new Laguerre-type population dynamics models. These models arise quite naturally by substituting in classical models the ordinary derivatives with the Laguerre derivatives and therefore by using the so called Laguerre-type exponentials instead of the ordinary exponential. The L-exponentials e n ( t ) are increasing convex functions for t  ⩾ 0, but increasing slower with respect to exp  t . For this reason these functions are useful in order to approximate different behaviors of population growth. We consider mainly the Laguerre-type derivative D t t D t , connected with the L-exponential e 1 ( t ), and investigate the corresponding modified logistic, Bernoulli and Gompertz models. Invariance of the Volterra–Lotka model is mentioned.

[1]  Animal Aggregations. , 1931, Nature.

[2]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[3]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[4]  D. Widder The heat equation , 1975 .

[5]  Paolo Emilio Ricci,et al.  Modelling population growth vialaguerre-type exponentials , 2005, Math. Comput. Model..

[6]  Youssèf Ben Cheikh,et al.  Some results on quasi-monomiality , 2003, Appl. Math. Comput..

[7]  Giuseppe Dattoli,et al.  Laguerre-Type Exponentials, and the Relevant 𝐿-Circular and 𝐿-Hyperbolic Functions , 2003 .

[8]  Giuseppe Dattoli,et al.  Evolution operator equations: Integration with algebraic and finitedifference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory , 1997 .

[9]  G. Beck,et al.  Actualités scientifiques et industrielles , 1933 .

[10]  P. Appell,et al.  Fonctions hypergéométriques et hypersphériques : polynomes d'Hermite , 1926 .

[11]  Horst R. Thieme,et al.  Mathematics in Population Biology , 2003 .

[12]  Georges b. Teissier,et al.  Vérifications expérimentales de la théorie mathématique de la lutte pour la vie , 1935 .

[13]  A. W. Kemp,et al.  A treatise on generating functions , 1984 .

[14]  C. Cesarano,et al.  Laguerre-type bessel functions , 2005 .

[15]  Michele Parrinello,et al.  Structure and dynamics of simple ionic liquids , 1979 .

[16]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  H. W. Gould,et al.  Operational formulas connected with two generalizations of Hermite polynomials , 1962 .