Size-dependent melting behavior of iron nanoparticles by replica exchange molecular dynamics.

Using the replica-exchange molecular dynamics method (REMD), we have investigated the size dependence of the melting behavior of iron nanoparticles. Comparing to conventional molecular dynamics (MD), the REMD method is found to be very efficient in determining the melting point by avoiding superheating and undercooling phenomena. With accurate determination of the melting point, we find that the melting temperature does not follow linearly with the inverse of size. By incorporating the size dependent thickness of surface liquid layer which is observed in our simulation, we propose a revised liquid skin melting model to describe the size dependent melting temperature.

[1]  V. Shapovalov,et al.  Modification of Pawlow's thermodynamical model for the melting of small single-component particles , 2011 .

[2]  Alessandro Laio,et al.  Finite temperature properties of clusters by replica exchange metadynamics: the water nonamer. , 2011, Journal of the American Chemical Society.

[3]  Yong‐Hyun Kim,et al.  Origin of the diverse melting behaviors of intermediate-size nanoclusters: theoretical study of AlN (N = 51-58, 64). , 2010, Journal of the American Chemical Society.

[4]  K. Nanda Size-dependent melting of nanoparticles: Hundred years of thermodynamic model , 2009 .

[5]  Y. Shibuta,et al.  A molecular dynamics study of the phase transition in bcc metal nanoparticles. , 2008, The Journal of chemical physics.

[6]  Y. Shibuta,et al.  Melting and nucleation of iron nanoparticles: A molecular dynamics study , 2007 .

[7]  S. Curtarolo,et al.  Size dependent melting mechanisms of iron nanoclusters , 2007 .

[8]  D. Astruc,et al.  Nanopartikel als regenerierbare Katalysatoren: an der Nahtstelle zwischen homogener und heterogener Katalyse , 2005 .

[9]  M. Efremov,et al.  Size-dependent melting of Bi nanoparticles , 2005 .

[10]  D. Srolovitz,et al.  Crystal-melt interfacial free energies in metals: fcc versus bcc , 2004 .

[11]  Mark Asta,et al.  Crystal-melt interfacial free energies and mobilities in fcc and bcc Fe , 2004 .

[12]  Seungwu Han,et al.  Development of new interatomic potentials appropriate for crystalline and liquid iron , 2003 .

[13]  M. El-Sayed,et al.  Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. , 2003, Journal of the American Chemical Society.

[14]  S. N. Sahu,et al.  Liquid-drop model for the size-dependent melting of low-dimensional systems , 2002 .

[15]  L. Bartell,et al.  Melting and Freezing of Gold Nanoclusters , 2001 .

[16]  Schafer,et al.  Melting of isolated tin nanoparticles , 2000, Physical review letters.

[17]  B. von Issendorff,et al.  Melting of free sodium clusters , 1999 .

[18]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[19]  H. Haberland,et al.  Irregular variations in the melting point of size-selected atomic clusters , 1998, Nature.

[20]  X. Gong,et al.  Structural properties and glass transition in Al n clusters , 1998 .

[21]  G. Bertsch Melting in Clusters , 1997, Science.

[22]  H. Haberland,et al.  Experimental Determination of the Melting Point and Heat Capacity for a Free Cluster of 139 Sodium Atoms , 1997 .

[23]  Canada.,et al.  Melting, freezing, and coalescence of gold nanoclusters , 1997, cond-mat/9703153.

[24]  Lai,et al.  Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements. , 1996, Physical review letters.

[25]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[26]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[27]  M. Manninen,et al.  Structural transitions and melting of copper clusters , 1993 .

[28]  M. Wautelet Estimation of the variation of the melting temperature with the size of small particles, on the basis of a surface-phonon instability model , 1991 .

[29]  R. S. Berry,et al.  When the melting and freezing points are not the same , 1990 .

[30]  David J. Wales,et al.  Melting and freezing of small argon clusters , 1990 .

[31]  Wang,et al.  Replica Monte Carlo simulation of spin glasses. , 1986, Physical review letters.

[32]  W. Jesser,et al.  Thermodynamic theory of size dependence of melting temperature in metals , 1977, Nature.

[33]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[34]  B. Rauch,et al.  Zur Thermodiffusion großer Fadenmoleküle in nichtidealer Lösung , 1969 .

[35]  C. Wronski The size dependence of the melting point of small particles of tin , 1967 .

[36]  Karl -Joseph Hanszen,et al.  Theoretische Untersuchungen über den Schmelzpunkt kleiner Kügelchen , 1960 .

[37]  P. Pawlow Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers , 1909 .

[38]  P. Pawlow Über die Schmelztemperatur der Körner des Salols , 1910 .