ON (q, h)-ANALOGUE OF FRACTIONAL CALCULUS

The paper discusses fractional integrals and derivatives appearing in the so-called (q, h)-calculus which is reduced for h = 0 to quantum calculus and for q = h = 1 to difference calculus. We introduce delta as well as nabla version of these notions and present their basic properties. Furthermore, we give comparisons with the known results and discuss possible extensions to more general settings.

[1]  H. Rosengren A non-commutative binomial formula , 2000 .

[2]  Polynomial Growth for Birational Mappings from Four-State Spin Edge Models , 2003 .

[3]  H B Benaoum,et al.  h analogue of Newton's binomial formula , 1998 .

[4]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[5]  A. Peterson,et al.  Dynamic Equations on Time Scales , 2001 .

[6]  P. Eloe,et al.  A transform method in discrete fractional calculus , 2007 .

[7]  Nien Fan Zhang,et al.  On a new definition of the fractional difference , 1988 .

[8]  Y. Ohta Discretization of Toroidal Soliton Equations , 2003 .

[9]  A. Peterson,et al.  Dynamic Equations on Time Scales: An Introduction with Applications , 2001 .

[10]  Theq-gamma function forx<0 , 1980 .

[11]  Ravi P. Agarwal,et al.  Certain fractional q-integrals and q-derivatives , 1969, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  Paul W. Eloe,et al.  Fractional q-Calculus on a time scale , 2007 .

[13]  Waleed A. Al-Salam Some Fractional q -Integrals and q -Derivatives , 1966 .

[14]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[15]  J. B. Díaz,et al.  Differences of fractional order , 1974 .

[16]  On simultaneous Abel equations , 1989 .

[17]  A. Nagai On a Certain Fractional q-Difference and its Eigen Function , 2003 .

[18]  Eddy Pariguan,et al.  On hypergeometric functions and Pochhammer -symbol. , 2004 .

[19]  Rafael Díaz,et al.  q,k-Generalized Gamma and Beta Functions , 2004, math/0405402.