Inositol 1,3,4,5-tetrakisphosphate is essential for sustained activation of the Ca2+-dependent K+ current in single internally perfused mouse lacrimal acinar cells

[1]  M. Berridge Inositol lipids and calcium signalling , 1990 .

[2]  B. Potter,et al.  Characterization of inositol 1,4,5-trisphosphate-sensitive (IsCaP) and-insensitive (IisCaP) nonmitochondrial Ca2+ pools in rat pancreatic acinar cells , 1989, The Journal of Membrane Biology.

[3]  B. Potter,et al.  myo‐Inositol 1,4,5‐trisphosphorothioate is a potent competitive inhibitor of human erythrocyte 5‐phosphatase , 1989, FEBS letters.

[4]  D. Gallacher Control of Calcium Influx in Cells Without Action Potentials , 1988 .

[5]  N. Dean,et al.  Inositol 1,3,4,5-tetrakisphosphate induces Ca2+ sequestration in rat liver cells. , 1988, Science.

[6]  M. Berridge The Croonian Lecture, 1988 - Inositol lipids and calcium signalling , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[7]  M. Hirata,et al.  Effects of inositol phosphates on the membrane activity of smooth muscle cells of the rabbit portal vein , 1988, Pflügers Archiv - European Journal of Physiology.

[8]  O. Petersen,et al.  Patch-clamp study of single-channel and whole-cell K+ currents in guinea pig pancreatic acinar cells. , 1988, The American journal of physiology.

[9]  K. Krause,et al.  Inositol trisphosphate isomers, but not inositol 1,3,4,5-tetrakisphosphate, induce calcium influx in Xenopus laevis oocytes. , 1988, The Journal of biological chemistry.

[10]  G. Matthews,et al.  Regulation of calcium influx by second messengers in rat mast cells , 1988, Nature.

[11]  R. Moor,et al.  Inositol phosphates: proliferation, metabolism and function. , 1988, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[12]  G. Williams,et al.  Heterogenous inositol tetrakisphosphate binding sites in the adrenal cortex. , 1988, The Journal of biological chemistry.

[13]  K. Swann,et al.  Activation of sea urchin eggs by inositol phosphates is independent of external calcium. , 1988, The Biochemical journal.

[14]  K. Krause,et al.  "Calciosome," a cytoplasmic organelle: the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of nonmuscle cells? , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[15]  M. Berridge,et al.  DL-myo-inositol 1,4,5-trisphosphorothioate mobilizes intracellular calcium in Swiss 3T3 cells and Xenopus oocytes. , 1988, Biochemical and biophysical research communications.

[16]  O. Petersen,et al.  Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+ channels , 1987, Nature.

[17]  R. Irvine,et al.  Specific binding sites for [3H]inositol(1,3,4,5)tetrakisphosphate on membranes of HL-60 cells. , 1987, Biochemical and biophysical research communications.

[18]  R. Miledi,et al.  Injection of inositol 1, 3, 4, 5-tetrakisphosphate into Xenopus oocytes generates a chloride current dependent upon intracellular calcium , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[19]  J. Mullaney,et al.  Intracellular calcium uptake activated by GTP. Evidence for a possible guanine nucleotide-induced transmembrane conveyance of intracellular calcium. , 1987, The Journal of biological chemistry.

[20]  Michael R Hamblin,et al.  myo-Inositol phosphorothioates, phosphatase-resistant analogues of myo-inositol phosphates. Synthesis of DL-myo-inositol 1,4-bisphosphate and DL-myo-inositol 1,4-bisphosphorothioate. , 1987, The Biochemical journal.

[21]  S. Dissing,et al.  Stimulation-induced changes in cytosolic calcium in rat parotid acini. , 1987, The American journal of physiology.

[22]  A. Marty,et al.  Dependence of intracellular effects of GTPγS and inositoltrisphosphate on cell membrane potential and on external Ca ions , 1987, Pflügers Archiv.

[23]  R. Moor,et al.  Inositol(1,3,4,5)tetrakisphosphate-induced activation of sea urchin eggs requires the presence of inositol trisphosphate. , 1987, Biochemical and biophysical research communications.

[24]  J. Williamson,et al.  Inositol 1,3,4,5‐tetrakisphosphate increases the duration of the inositol 1,4,5‐trisphosphate‐mediated Ca2+ transient , 1987, FEBS letters.

[25]  A. P. Morris,et al.  The receptor‐regulated calcium influx in mouse submandibular acinar cells is sodium dependent: a patch‐clamp study. , 1987, The Journal of physiology.

[26]  P. Majerus,et al.  The metabolism of tris- and tetraphosphates of inositol by 5-phosphomonoesterase and 3-kinase enzymes. , 1987, The Journal of biological chemistry.

[27]  R. Bruzzone,et al.  Rapid increases in inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate and cytosolic free Ca2+ in agonist-stimulated pancreatic acini of the rat. Effect of carbachol, caerulein and secretin. , 1987, The Biochemical journal.

[28]  C. Fuller,et al.  Cholinergic Receptor-regulation of Potassium Channels and Potassium Transport in Human Submandibular Acinar Cells , 1987, Journal of dental research.

[29]  C. Fuller,et al.  Cholinergic receptors regulate a voltage‐insensitive but Na+‐dependent calcium influx pathway in salivary acinar cells , 1987, FEBS letters.

[30]  M. Berridge,et al.  Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. , 1986, The Biochemical journal.

[31]  M. Berridge,et al.  Specificity of inositol phosphate-stimulated Ca2+ mobilization from Swiss-mouse 3T3 cells. , 1986, The Biochemical journal.

[32]  C. Wollheim,et al.  Ca2+ regulates the inositol tris/tetrakisphosphate pathway in intact and broken preparations of insulin-secreting RINm5F cells. , 1986, The Journal of biological chemistry.

[33]  P. Hawkins,et al.  Rapid formation of inositol 1,3,4,5-tetrakisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands may both result indirectly from receptor-stimulated release of inositol 1,4,5-trisphosphate from phosphatidylinositol 4,5-bisphosphate. , 1986, The Biochemical journal.

[34]  Y. Nishizuka Studies and perspectives of protein kinase C. , 1986, Science.

[35]  O. Petersen Calcium-activated potassium channels and fluid secretion by exocrine glands. , 1986, The American journal of physiology.

[36]  P. Knauf,et al.  Location of the chloride self-inhibitory site of the human erythrocyte anion exchange system. , 1986, The American journal of physiology.

[37]  M. J. Berridge,et al.  The inositol tris/tetrakisphosphate pathway—demonstration of Ins(l,4,5)P3 3-kinase activity in animal tissues , 1986, Nature.

[38]  A. P. Morris,et al.  A patch‐clamp study of potassium currents in resting and acetylcholine‐stimulated mouse submandibular acinar cells. , 1986, The Journal of physiology.

[39]  C. Petersen,et al.  Hormonal activation of single K+ channels via internal messenger in isolated pancreatic acinar cells , 1985, FEBS Letters.

[40]  S. Nahorski,et al.  Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. , 1985, The Biochemical journal.

[41]  O. Petersen,et al.  Human pancreatic acinar cells: studies of stimulus-secretion coupling. , 1985, Gastroenterology.

[42]  Michael J. Berridge,et al.  Inositol trisphosphate, a novel second messenger in cellular signal transduction , 1984, Nature.

[43]  I. Findlay A patch‐clamp study of potassium channels and whole‐cell currents in acinar cells of the mouse lacrimal gland. , 1984, The Journal of physiology.

[44]  O. Petersen,et al.  Calcium-activated potassium channels and their role in secretion , 1984, Nature.

[45]  M. J. Berridge,et al.  Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate , 1983, Nature.

[46]  O. Petersen,et al.  Quantification of Ca2+-activated K+ channels under hormonal control in pig pancreas acinar cells , 1983, Nature.

[47]  C. Downes,et al.  The inositol trisphosphate phosphomonoesterase of the human erythrocyte membrane. , 1982, The Biochemical journal.

[48]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[49]  A. Burgen The secretion of potassium in saliva , 1956, The Journal of physiology.

[50]  O. Petersen,et al.  Control of K+ conductance by cholecystokinin and Ca2+ in single pancreatic acinar cells studied by the patch-clamp technique , 2005, The Journal of Membrane Biology.

[51]  O. Petersen,et al.  Electrogenic properties of the sodium-alanine cotransporter in pancreatic acinar cells: I. Tight-seal whole-cell recordings , 2005, The Journal of Membrane Biology.

[52]  E. Bayerdörffer,et al.  Effect of inositol-1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas , 2005, The Journal of Membrane Biology.

[53]  O. Petersen,et al.  Electrophysiology of pancreatic and salivary acinar cells. , 1988, Annual review of physiology.

[54]  B. Potter,et al.  myo-Inositol 1,4,5-trisphosphorothioate: a novel analogue of a biological second messenger , 1987 .

[55]  A. Trautmann,et al.  Activation of Ca-dependent K channels by carbamoylcholine in rat lacrimal glands. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Alain Marty,et al.  Tight-Seal Whole-Cell Recording , 1983 .