Indium Phosphide based Integrated Photonic Devices for Telecommunications and Sensing Applications

Photonics is an exciting area of study that is situated at the cross-section of physics, material science, and electrical engineering. The integration of photonic devices serves to reduce the size, weight, power consumption, and cost of the photonicsbased systems, whose applications can be as disparate in nature as communications and medicine. In particular, an integrated all-optical logic gate and wavelength converter for fiber-optic telecommunications and an integrated tunable laser for trace-gas sensing are investigated in this thesis. These devices are fabricated in the indium phosphide (InP) material system, which includes InP and the ternary/quaternary III-V semiconductors that can be grown closely lattice-matched on the InP substrate. The all-optical logic gate is designed as a Mach-Zehnder interferometer with semiconductor optical amplifiers as active nonlinear elements that are optically coupled to the passive waveguides using the asymmetric twin waveguide technique. The device is grown and fabricated monolithically and carrier-dependent optical interference is demonstrated at the 1.55 μm wavelength. The tunable diode laser is designed to operate in the wavelength range of 1.55 μm – 2 μm for trace-gas spectroscopic sensing and comprises of strained InGaAs quantum wells. The laser is monolithically fabricated using mask-less lithography techniques and tuning is demonstrated in Fabry-Perot cavity lasers under continuous-wave operation. A ring-coupled 2 μm wavelength laser is designed that will exhibit a tuning range of tens of nanometers. Thesis Supervisor: Leslie A. Kolodziejski Title: Professor of Electrical Engineering

[1]  G. Duan,et al.  Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 $\mu$m , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  T. Barwicz,et al.  Fabrication of add-drop filters based on frequency-matched microring resonators , 2006, Journal of Lightwave Technology.

[3]  C.J. Chang-Hasnain,et al.  Tunable VCSEL , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  K. R. Williams,et al.  Etch rates for micromachining processing , 1996 .

[5]  Qianfan Xu,et al.  All-optical logic based on silicon micro-ring resonators. , 2007, Optics express.

[6]  Tymon Barwicz,et al.  Multistage high-order microring-resonator add-drop filters. , 2006, Optics letters.

[7]  I. Vurgaftman,et al.  Midinfrared “W” diode lasers with improved electrical characteristics , 2003 .

[8]  S. Matsuo,et al.  Full $C$-Band Tuning Operation of Semiconductor Double-Ring Resonator-Coupled Laser With Low Tuning Current , 2007, IEEE Photonics Technology Letters.

[9]  C. Holzwarth Material selection and nanofabrication techniques for electronic photonic integrated circuits , 2009 .

[10]  Youngchul Chung,et al.  Widely Tunable Coupled-ring Reflector Laser Diode Consisting of Square Ring Resonators , 2010 .

[11]  B. W. Hakki,et al.  cw degradation at 300°K of GaAs double-heterostructure junction lasers. II. Electronic gain , 1973 .

[12]  K. R. Williams,et al.  Etch rates for micromachining processing-Part II , 2003 .

[13]  G. Desalvo,et al.  Etch Rates and Selectivities of Citric Acid/Hydrogen Peroxide on GaAs , Al0.3Ga0.7As , In0.2Ga0.8As , In0.53Ga0.47As , In0.52Al0.48As , and InP , 1992 .

[14]  J. Bowers,et al.  Wide tunable double ring resonator coupled lasers , 2002, IEEE Photonics Technology Letters.

[15]  P. Studenkov,et al.  Efficient coupling in integrated twin-waveguide lasers using waveguide tapers , 1999, IEEE Photonics Technology Letters.

[16]  Markus-Christian Amann,et al.  Room-temperature 3.73 µm GaSb-based type-I quantum-well lasers with quinternary barriers , 2012 .

[17]  S. Forrest,et al.  Photonic integration using asymmetric twin-waveguide (ATG) technology: part I-concepts and theory , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  A. Krier Mid-infrared Semiconductor Optoelectronics , 2006 .

[19]  K. Otsubo,et al.  Performance and physics of quantum-dot lasers with self-assembled columnar-shaped and 1.3-/spl mu/m emitting InGaAs quantum dots , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  T. Krauss,et al.  Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides , 2007, Journal of Lightwave Technology.

[21]  D. Bimberg,et al.  On ultrafast optical switching based on quantum-dot semiconductor optical amplifiers in nonlinear interferometers , 2004, IEEE Photonics Technology Letters.

[22]  W. Österle,et al.  Pd/Sb(Zn) and Pd/Ge(Zn) ohmic contacts on p-type indium gallium arsenide: The employment of the solid phase regrowth principle to achieve optimum electrical and metallurgical properties , 2000 .

[23]  S. Forrest,et al.  Photonic integration using asymmetric twin-waveguide (ATG) technology: part II-devices , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  K. Hjort Sacrificial etching of III-V compounds for micromechanical devices : Sacrificial etching papers , 1996 .

[25]  M. B. Das,et al.  The effects of contact size and non-zero metal resistance on the determination of specific contact resistance , 1982 .

[26]  Nikolai N. Ledentsov,et al.  Quantum dot heterostructures , 1999 .

[27]  P. Chi Growth and characterization of mid-infrared phosphide-based semiconductor diode lasers , 2010 .

[28]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[29]  James S. Harris,et al.  Novel planarization and passivation in the integration of III-V semiconductor devices , 2004, SPIE OPTO.

[30]  R. D. Briggs,et al.  A survey of ohmic contacts to III-V compound semiconductors , 1997 .

[31]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[32]  T. W. Berg,et al.  The Dynamics of Semiconductor Optical Amplifiers: Modeling and Applications , 2003 .

[33]  I. Glesk,et al.  Monolithic integration of an all-optical Mach-Zehnder demultiplexer using an asymmetric twin-waveguide structure , 2001, IEEE Photonics Technology Letters.

[34]  L.A. Coldren,et al.  Tunable semiconductor lasers: a tutorial , 2004, Journal of Lightwave Technology.

[35]  G. K. Reeves,et al.  Obtaining the specific contact resistance from transmission line model measurements , 1982, IEEE Electron Device Letters.

[36]  F. Pommereau,et al.  Room temperature continuous-wave operation of buried ridge stripe lasers using InAs-InP (100) quantum dots as active core , 2005, IEEE Photonics Technology Letters.

[37]  R. Schaller,et al.  Moore's law: past, present and future , 1997 .

[38]  P. Dumon,et al.  Basic structures for photonic integrated circuits in Silicon-on-insulator. , 2004, Optics express.

[39]  Y. Ueno,et al.  Error-free all-optical demultiplexing at 336 Gb/s with a hybrid-integrated symmetric-Mach-Zehnder switch , 2002, Optical Fiber Communication Conference and Exhibit.

[40]  安達 定雄 Physical properties of III-V semiconductor compounds : InP, InAs, GaAs, GaP, InGaAs, and InGaAsP , 1992 .

[41]  Tymon Barwicz,et al.  Accurate Nanofabrication Techniques for High-Index-Contrast Microphotonic Devices , 2005 .

[42]  R. M. Swanson,et al.  Modeling and measurement of contact resistances , 1987, IEEE Transactions on Electron Devices.

[43]  S. Matsuo,et al.  Microring-Resonator-Based Widely Tunable Lasers , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[44]  Shigeo Sugou,et al.  Influence of GaAs capping on the optical properties of InGaAs/GaAs surface quantum dots with 1.5 μm emission , 1998 .

[45]  S. Adachi,et al.  Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb. , 1987, Physical review. B, Condensed matter.

[46]  N. Doran,et al.  Nonlinear-optical loop mirror. , 1988, Optics letters.

[47]  S. Nie,et al.  Luminescent quantum dots for multiplexed biological detection and imaging. , 2002, Current opinion in biotechnology.

[48]  W. Henschel,et al.  Sub-10 nm linewidth and overlay performance achieved with a fine-tuned EBPG-5000 TFE electron beam lithography system , 2000, Digest of Papers Microprocesses and Nanotechnology 2000. 2000 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.00EX387).

[49]  M. Saruwatari,et al.  Error-free demultiplexing of 160 Gbit/s pulse signal using optical loop mirror including semiconductor laser amplifier , 1994 .

[50]  T. Miyazaki,et al.  Wide-wavelength tunable lasers with 100 ghz fsr ring resonators , 2007 .

[51]  A. Goetzberger,et al.  RESEARCH AND INVESTIGATION OF INVERSE EPITAXIAL UHF POWER TRANSISTORS , 1964 .

[52]  Ingrid Moerman,et al.  A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices , 1997 .

[53]  B. W. Hakki,et al.  cw degradation at 300°K of GaAs double‐heterostructure junction lasers. I. Emission spectra , 1973 .

[54]  Claude Alibert,et al.  Refractive indices of AlSb and GaSb‐lattice‐matched AlxGa1−xAsySb1−y in the transparent wavelength region , 1991 .

[55]  J. Campbell,et al.  Monolithic laser/waveguide coupling by evanescent fields , 1977, IEEE Journal of Quantum Electronics.

[56]  G. Agrawal Fiber‐Optic Communication Systems , 2021 .

[57]  K. Rauschenbach,et al.  40-Gb/s demultiplexing using an ultrafast nonlinear interferometer (UNI) , 1996, IEEE Photonics Technology Letters.

[58]  R. P. Gnall,et al.  Continuously tunable 1.5μm multiple-quantum-well GaInAs/GaInAsP distributed-Bragg-reflector lasers , 1988 .

[59]  Minoru Yamada,et al.  Integrated twin-guide AlGaAs laser with multiheterostructure , 1975 .

[60]  A. Baliga,et al.  High power MEMs-tunable vertical-cavity surface-emitting lasers , 2001, 2001 Digest of LEOS Summer Topical Meetings: Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Compo.

[61]  Peter Hering,et al.  ONLINE MONITORING OF EXHALED BREATH USING MID-INFRARED LASER SPECTROSCOPY Laser Spectroscopic Breath Monitoring , 2008 .

[62]  R. Osgood,et al.  Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications , 1991 .

[63]  Charles W. Tu,et al.  Self-assembled GaInNAs quantum dots for 1.3 and 1.55 μm emission on GaAs , 2000 .

[64]  Jin Soo Kim,et al.  Room-temperature operation of InP-based InAs quantum dot laser , 2004, IEEE Photonics Technology Letters.

[65]  Y Yohan Barbarin,et al.  Lasing of wavelength-tunable (1.55μm region) InAs∕InGaAsP∕InP (100) quantum dots grown by metal organic vapor-phase epitaxy , 2006 .

[66]  W. Li,et al.  Strain-compensated InGaAsSb/AlGaAsSb mid-infrared quantum-well lasers , 2004 .

[67]  Frank K. Tittel,et al.  Semiconductor Laser Based Trace Gas Sensor Technology: Recent Advances and Applications , 2008 .

[68]  Mitsuru Sugawara,et al.  Quantum-dot semiconductor optical amplifiers , 2002, SPIE/OSA/IEEE Asia Communications and Photonics.

[69]  Y. Nishi,et al.  Arsenic-Dominated Chemistry in the Acid Cleaning of InGaAs and InAlAs Surfaces , 2008 .

[70]  L.A. Coldren,et al.  Monolithic tunable diode lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[71]  Christian Seassal,et al.  Fabrication of InP-based freestanding microstructures by selective surface micromachining , 1996 .

[72]  D.A.B. Miller,et al.  Rationale and challenges for optical interconnects to electronic chips , 2000, Proceedings of the IEEE.

[73]  Sellmeier Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen , 1871 .

[74]  E. Sorokin Ultrabroadband Solid-State Lasers in Trace Gas Sensing , 2008 .

[75]  T. Krauss,et al.  An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers , 2002 .

[76]  H. Sigg,et al.  The refractive index of AlxGa1−xAs below the band gap: Accurate determination and empirical modeling , 2000 .

[77]  Seng-Tiong Ho,et al.  Single-mode lasing operation using a microring resonator as a wavelength selector , 2002 .

[78]  K. Stubkjaer,et al.  Semiconductor optical amplifier-based all-optical gates for high-speed optical processing , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[79]  K L Hall,et al.  Interferometric all-optical switches for ultrafast signal processing. , 1998, Applied optics.

[80]  J.H. Klootwijk,et al.  Merits and limitations of circular TLM structures for contact resistance determination for novel III-V HBTs , 2004, Proceedings of the 2004 International Conference on Microelectronic Test Structures (IEEE Cat. No.04CH37516).

[81]  Miloš Popović,et al.  Theory and design of high-index-contrast microphotonic circuits , 2008 .

[82]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[83]  G. Whitesides,et al.  Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field , 1997 .

[84]  A. Suzuki,et al.  Narrow spectral linewidth full band tunable laser based on waveguide ring resonators with low power consumption , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[85]  G. Roelkens,et al.  Efficient Polarization Diversity Grating Couplers in Bonded InP-Membrane , 2008, IEEE Photonics Technology Letters.

[86]  B. Jensen,et al.  Refractive index of quaternary In1−xGaxAsyP1−y lattice matched to InP , 1983 .

[87]  Changyuan Yu,et al.  44-ns Continuously Tunable Dispersionless Optical Delay Element Using a PPLN Waveguide With Two-Pump Configuration, DCF, and a Dispersion Compensator , 2007, IEEE Photonics Technology Letters.

[88]  I. Vurgaftman,et al.  Room-temperature “W” diode lasers emitting at λ≈4.0μm , 2004 .

[89]  S. G. Napholtz,et al.  Pt/Ti Ohmic contact to p++‐InGaAsP (1.3 μm) formed by rapid thermal processing , 1990 .

[90]  Wei-Ping Huang,et al.  Simulation of three-dimensional optical waveguides by a full-vector beam propagation method , 1993 .

[91]  G. Griffel,et al.  Low-threshold InGaAsP ring lasers fabricated using bi-level dry etching , 2000, IEEE Photonics Technology Letters.

[92]  Yasuhiko Arakawa,et al.  Over 1.5 μm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition , 2001 .

[93]  H. Haus,et al.  Microring resonator channel dropping filters , 1997 .

[94]  S. Sugou,et al.  Ground-state lasing at room temperature in long-wavelength InAs quantum-dot lasers on InP(311)B substrates , 2001 .

[95]  Hongling Rao,et al.  A bidirectional beam propagation method for multiple dielectric interfaces , 1999, IEEE Photonics Technology Letters.

[96]  R. Steiner Medical Applications of Mid-IR Solid-State Lasers , 2008 .

[97]  Chenglu Lin,et al.  Low threshold room-temperature continuous-wave operation of 2.24–3.04 μm GaInAsSb/AlGaAsSb quantum-well lasers , 2004 .

[98]  K L Hall,et al.  100-Gbit/s bitwise logic. , 1998, Optics letters.

[99]  Paul E. Green Fiber to the home: the next big broadband thing , 2004, IEEE Communications Magazine.

[100]  E.C.M. Pennings,et al.  Optical multi-mode interference devices based on self-imaging: principles and applications , 1995 .

[101]  Ramon U. Martinelli,et al.  Room-temperature 2.5 μm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves , 2002 .

[102]  Steve Grubb,et al.  400 Gbit/s (10 channel × 40 Gbit/s) DWDM photonic integrated circuits , 2005 .

[103]  D. H. Mash,et al.  Light-emitting diodes , 1977, Nature.

[104]  Jade P. Wang,et al.  Demonstrating effective all-optical processing in ultrafast data networks using semiconductor optical amplifiers , 2008 .

[105]  H. Hatakeyama,et al.  168-Gb/s OTDM WAVELENGTH CONVERSION USING AN SMZ-TYPE ALL-OPTICAL SWITCH , 2002 .

[106]  Cinzia Sada,et al.  Integrated Ring Resonators , 2020 .

[107]  Zhixi Bian,et al.  Ring Resonator Lasers using Passive Waveguides and Integrated Semiconductor Optical Amplifiers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[108]  Y. Choi,et al.  Wide tuning characteristics of double-ring coupled lasers , 2009 .

[109]  E.P. Ippen,et al.  Demonstration of 40-Gb/s Packet Routing Using All-Optical Header Processing , 2006, IEEE Photonics Technology Letters.

[110]  J. R. Morris,et al.  Time-dependent propagation of high energy laser beams through the atmosphere , 1976 .

[111]  J. Barton,et al.  Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers , 2000, IEEE Photonics Technology Letters.

[112]  Robert R. Birge,et al.  All-optical logic gates using bacteriorhodopsin films , 2000 .

[113]  D. Syvridis,et al.  Broadly Tunable Laser Using Double-Rings Vertically Coupled to a Passive Waveguide , 2010, IEEE Journal of Quantum Electronics.

[114]  D. Poitras,et al.  Femtosecond gain and index dynamics in an InAs/InGaAsP quantum dot amplifier operating at 1.55 microm. , 2006, Optics express.

[115]  A. Vicet,et al.  Tunability of antimonide-based semiconductor lasers diodes and experimental evaluation of the thermal resistance , 2003 .

[116]  Aleksandra Markina-Khusid,et al.  Design and simulation for the fabrication of integrated semiconductor optical logic gates , 2005 .

[117]  K. Nosu,et al.  Review and status of wavelength-division-multiplexing technology and its application , 1984 .

[118]  Shanhui Fan,et al.  Stopping light all optically. , 2004, Physical review letters.

[119]  Hadis Morkoç,et al.  Recent developments in ohmic contacts for III-V compound semiconductors , 1992 .

[120]  G. R. Hadley,et al.  Wide-angle beam propagation using Pade approximant operators. , 1992, Optics letters.

[121]  Val Zwiller,et al.  Growth and characterization of single quantum dots emitting at 1300 nm , 2005 .

[122]  R. Baets,et al.  Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides , 2006 .

[123]  A. Shakouri,et al.  A GaInAsP-InP double-ring resonator coupled laser , 2005, IEEE Photonics Technology Letters.

[124]  D. P. Kern,et al.  Point exposure distribution measurements for proximity correction in electron beam lithography on a sub‐100 nm scale , 1987 .

[125]  K.-H. Brenner,et al.  Light propagation through microlenses: a new simulation method , 1993, International Commission for Optics.

[126]  Larry A. Coldren,et al.  Demonstration of 40 Gbit/s optical packet synchronisation using fibre Bragg gratings and fast-tunable wavelength converters , 2006 .

[127]  Manning,et al.  Nonlinear Optics for High-Speed Digital Information Processing. , 1999, Science.

[128]  Michal Lipson,et al.  All-optical slow-light on a photonic chip. , 2006, Optics express.

[129]  J. Piprek,et al.  Self-consistent analysis of high-temperature effects on strained-layer multiquantum-well InGaAsP-InP lasers , 2000, IEEE Journal of Quantum Electronics.

[130]  A. Ellis,et al.  Semiconductor laser amplifiers for ultrafast all-optical signal processing , 1997 .

[131]  Plasma and Reactive Ion Etching , 2001 .

[132]  Aron Pinczuk,et al.  Compositional dependence of band‐gap energy and conduction‐band effective mass of In1−x−yGaxAlyAs lattice matched to InP , 1982 .

[133]  P. Hao,et al.  Anomalous Lateral Zn Surface Diffusion in InP Caused by Zn-Contained Metallization , 1997 .

[134]  Qian Gong,et al.  Room temperature continuous-wave operation of InAs/InP (100) quantum dot lasers grown by gas-source molecular-beam epitaxy , 2008 .

[135]  Ryan Daniel Williams,et al.  Photonic integrated circuits for optical logic applications , 2007 .