Geodetic measurements reveal similarities between post–Last Glacial Maximum and present-day mass loss from the Greenland ice sheet

Present destabilization of marine-based sectors in Greenland may increase sea level for centuries to come. Accurate quantification of the millennial-scale mass balance of the Greenland ice sheet (GrIS) and its contribution to global sea-level rise remain challenging because of sparse in situ observations in key regions. Glacial isostatic adjustment (GIA) is the ongoing response of the solid Earth to ice and ocean load changes occurring since the Last Glacial Maximum (LGM; ~21 thousand years ago) and may be used to constrain the GrIS deglaciation history. We use data from the Greenland Global Positioning System network to directly measure GIA and estimate basin-wide mass changes since the LGM. Unpredicted, large GIA uplift rates of +12 mm/year are found in southeast Greenland. These rates are due to low upper mantle viscosity in the region, from when Greenland passed over the Iceland hot spot about 40 million years ago. This region of concentrated soft rheology has a profound influence on reconstructing the deglaciation history of Greenland. We reevaluate the evolution of the GrIS since LGM and obtain a loss of 1.5-m sea-level equivalent from the northwest and southeast. These same sectors are dominating modern mass loss. We suggest that the present destabilization of these marine-based sectors may increase sea level for centuries to come. Our new deglaciation history and GIA uplift estimates suggest that studies that use the Gravity Recovery and Climate Experiment satellite mission to infer present-day changes in the GrIS may have erroneously corrected for GIA and underestimated the mass loss by about 20 gigatons/year.

[1]  R. Jovani,et al.  Opening the Doors of Parasitology Journals to Other Symbionts. , 2017, Trends in parasitology.

[2]  Wilfried Thuiller,et al.  Extinction risk of North American seed plants elevated by climate and land‐use change , 2017 .

[3]  Eric R. Dougherty,et al.  Parasite vulnerability to climate change: an evidence-based functional trait approach , 2017, Royal Society Open Science.

[4]  Robert P. Anderson,et al.  Transformational Principles for NEON Sampling of Mammalian Parasites and Pathogens: A Response to Springer and Colleagues , 2016 .

[5]  R. Jovani,et al.  Global associations between birds and vane-dwelling feather mites. , 2016, Ecology.

[6]  Antoine Flahault,et al.  Climate change and infectious diseases , 2016, Public Health Reviews.

[7]  J. Dupouy-Camet Parasites of cold climates: A danger or in danger? , 2016 .

[8]  Eric R. Dougherty,et al.  Paradigms for parasite conservation , 2016, Conservation biology : the journal of the Society for Conservation Biology.

[9]  Niels Raes,et al.  Minimum required number of specimen records to develop accurate species distribution models , 2016 .

[10]  Maik Thomas,et al.  Melting at the base of the Greenland ice sheet explained by Iceland hotspot history , 2016 .

[11]  J. Okuno,et al.  Total meltwater volume since the Last Glacial Maximum and viscosity structure of Earth's mantle inferred from relative sea level changes at Barbados and Bonaparte Gulf and GIA-induced J̇2 , 2016 .

[12]  Martin Truffer,et al.  Complex Greenland outlet glacier flow captured , 2016, Nature Communications.

[13]  E. Willerslev,et al.  Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900 , 2015, Nature.

[14]  Matthias C Rillig,et al.  Extinction risk of soil biota , 2015, Nature Communications.

[15]  R. Poulin,et al.  Missing links: testing the completeness of host-parasite checklists , 2015, Parasitology.

[16]  M. Berkelhammer,et al.  The stability and calibration of water vapor isotope ratio measurements during long-term deployments , 2015 .

[17]  Qiongyu Huang,et al.  Future habitat loss and extinctions driven by land‐use change in biodiversity hotspots under four scenarios of climate‐change mitigation , 2015, Conservation biology : the journal of the Society for Conservation Biology.

[18]  David Hudak,et al.  The annual cycle of snowfall at Summit, Greenland , 2015 .

[19]  E. Mosley‐Thompson,et al.  Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014 , 2015 .

[20]  P. Ehrlich,et al.  Accelerated modern human–induced species losses: Entering the sixth mass extinction , 2015, Science Advances.

[21]  M. R. van den Broeke,et al.  Dynamic thinning of glaciers on the Southern Antarctic Peninsula , 2015, Science.

[22]  M. C. Urban Accelerating extinction risk from climate change , 2015, Science.

[23]  Xavier Fettweis,et al.  The summer 2012 Greenland heat wave: In situ and remote sensing observations of water vapor isotopic composition during an atmospheric river event , 2015 .

[24]  Brett R. Scheffers,et al.  Assessing species' vulnerability to climate change , 2015 .

[25]  Kevin T Shoemaker,et al.  Warning times for species extinctions due to climate change , 2015, Global change biology.

[26]  Jason L. Brown,et al.  Shifting ranges and conservation challenges for lemurs in the face of climate change , 2015, Ecology and evolution.

[27]  P. Huybers,et al.  Sea Ice and Dynamical Controls on Preindustrial and Last Glacial Maximum Accumulation in Central Greenland , 2014 .

[28]  D. Sax,et al.  Climatic niche shifts between species' native and naturalized ranges raise concern for ecological forecasts during invasions and climate change , 2014 .

[29]  S. J. Hiestand,et al.  Modelling potential presence of metazoan endoparasites of bobcats (Lynx rufus) using verified records. , 2014, Folia parasitologica.

[30]  Philippe Huybrechts,et al.  A model of Greenland ice sheet deglaciation constrained by observations of relative sea level and ice extent , 2014 .

[31]  A. Kuris,et al.  Reduced parasite diversity and abundance in a marine whelk in its expanded geographical range , 2014 .

[32]  A. Peterson,et al.  Range‐wide ecological niche comparisons of parasite, hosts and dispersers in a vector‐borne plant parasite system , 2014 .

[33]  W. Lipscomb,et al.  The pattern of anthropogenic signal emergence in Greenland Ice Sheet surface mass balance , 2014 .

[34]  Angelika Humbert,et al.  Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2 , 2014 .

[35]  A. Luckman,et al.  Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age , 2014 .

[36]  Christopher J. Butler,et al.  Global Decline in Suitable Habitat for Angiostrongylus ( = Parastrongylus) cantonensis: The Role of Climate Change , 2014, PloS one.

[37]  R. Jovani,et al.  Climate-Driven Variation in the Intensity of a Host-Symbiont Animal Interaction along a Broad Elevation Gradient , 2014, PloS one.

[38]  M. Blaxter,et al.  The evolution of parasitism in Nematoda , 2014, Parasitology.

[39]  Beata Csatho,et al.  Fusion of multi-sensor surface elevation data for improved characterization of rapidly changing outlet glaciers in Greenland , 2014 .

[40]  F. M. Selten,et al.  Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat , 2014, Nature.

[41]  Robert P. Anderson,et al.  Making better Maxent models of species distributions: complexity, overfitting and evaluation , 2014 .

[42]  J. Harte,et al.  Beyond the species–area relationship: improving macroecological extinction estimates , 2014 .

[43]  M. R. van den Broeke,et al.  Evaluating Greenland glacial isostatic adjustment corrections using GRACE, altimetry and surface mass balance data , 2014 .

[44]  E. Brun,et al.  The growth of sublimation crystals and surface hoar on the Antarctic plateau , 2013 .

[45]  Nyeema C. Harris,et al.  The more parasites, the better? , 2013, Science.

[46]  Nyeema C. Harris,et al.  Species loss on spatial patterns and composition of zoonotic parasites , 2013, Proceedings of the Royal Society B: Biological Sciences.

[47]  Robert P. Anderson,et al.  Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes , 2013 .

[48]  K. Priestley,et al.  The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle , 2013 .

[49]  V. Masson‐Delmotte,et al.  What controls the isotopic composition of Greenland surface snow , 2013 .

[50]  M. D. Ellehoj,et al.  Ice-vapor equilibrium fractionation factor of hydrogen and oxygen isotopes: experimental investigations and implications for stable water isotope studies. , 2013, Rapid communications in mass spectrometry : RCM.

[51]  Matthew J. Smith,et al.  Protected areas network is not adequate to protect a critically endangered East Africa Chelonian: Modelling distribution of pancake tortoise, Malacochersus tornieri under current and future climates , 2013, bioRxiv.

[52]  Pieter T. J. Johnson,et al.  Host and parasite diversity jointly control disease risk in complex communities , 2013, Proceedings of the National Academy of Sciences.

[53]  G. Hsiao,et al.  The nocturnal water cycle in an open‐canopy forest , 2013 .

[54]  Daniel H. Thornton,et al.  Predicting shifts in parasite distribution with climate change: a multitrophic level approach , 2013, Global change biology.

[55]  R. Ostfeld,et al.  Climate Change and Infectious Diseases: From Evidence to a Predictive Framework , 2013, Science.

[56]  J. Mitrovica,et al.  Barbados-based estimate of ice volume at Last Glacial Maximum affected by subducted plate , 2013 .

[57]  E. Ivins,et al.  Antarctic contribution to sea level rise observed by GRACE with improved GIA correction , 2013 .

[58]  N. DiGirolamo,et al.  Variability in the surface temperature and melt extent of the Greenland ice sheet from MODIS , 2013 .

[59]  D. McGrath,et al.  Recent warming at Summit, Greenland: Global context and implications , 2013 .

[60]  Harald Sodemann,et al.  Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet , 2013 .

[61]  P. Galli,et al.  Fish parasites resolve the paradox of missing coextinctions , 2013, Nature Communications.

[62]  K. Steffen,et al.  July 2012 Greenland melt extent enhanced by low-level liquid clouds , 2013, Nature.

[63]  I. Joughin,et al.  Time-evolving mass loss of the Greenland Ice Sheet from satellite altimetry , 2013 .

[64]  J. Andrew Royle,et al.  Presence‐only modelling using MAXENT: when can we trust the inferences? , 2013 .

[65]  Matthew J. Smith,et al.  The Effects of Sampling Bias and Model Complexity on the Predictive Performance of MaxEnt Species Distribution Models , 2013, PloS one.

[66]  David D. Turner,et al.  Surface‐based inversions above central Greenland , 2013 .

[67]  Matthew E. Aiello‐Lammens,et al.  How does climate change cause extinction? , 2013, Proceedings of the Royal Society B: Biological Sciences.

[68]  Axel Rülke,et al.  An investigation of Glacial Isostatic Adjustment over the Amundsen Sea sector, West Antarctica , 2012 .

[69]  Greg J. McInerny,et al.  Ditch the niche – is the niche a useful concept in ecology or species distribution modelling? , 2012 .

[70]  R. Etienne,et al.  Pitch the niche – taking responsibility for the concepts we use in ecology and species distribution modelling , 2012 .

[71]  R. Etienne,et al.  Stitch the niche – a practical philosophy and visual schematic for the niche concept , 2012 .

[72]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[73]  F. Simons,et al.  Mapping Greenland’s mass loss in space and time , 2012, Proceedings of the National Academy of Sciences.

[74]  Ian M. Howat,et al.  A new bed elevation dataset for Greenland , 2012 .

[75]  Wilfried Thuiller,et al.  Invasive species distribution models – how violating the equilibrium assumption can create new insights , 2012 .

[76]  N. Dobretsov,et al.  Structure of the upper mantle in the Circum-Arctic region from regional seismic tomography , 2012 .

[77]  Matt A. King,et al.  Increased ice loading in the Antarctic Peninsula since the 1850s and its effect on glacial isostatic adjustment , 2012 .

[78]  B. Steinberger,et al.  Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans , 2012 .

[79]  Jian Wang,et al.  Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change , 2012, Proceedings of the National Academy of Sciences.

[80]  D. Wolfe,et al.  Determining water sources in the boundary layer from tall tower profiles of water vapor and surface water isotope ratios after a snowstorm in Colorado , 2012 .

[81]  K. Lambeck,et al.  Lithosphere thickness and mantle viscosity inverted from GPS-derived deformation rates in Fennoscandia , 2012 .

[82]  G. Spada,et al.  Greenland uplift and regional sea level changes from ICESat observations and GIA modelling , 2012 .

[83]  Wilfried Thuiller,et al.  Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. , 2012, Ecology letters.

[84]  A. Møller,et al.  Feather mites (Acari: Astigmata) and body condition of their avian hosts: a large correlative study , 2012 .

[85]  K. Lafferty,et al.  FishPEST: an innovative software suite for fish parasitologists. , 2012, Trends in parasitology.

[86]  W. Tad Pfeffer,et al.  Recent contributions of glaciers and ice caps to sea level rise , 2012, Nature.

[87]  P. Adler,et al.  Coextinction and Persistence of Dependent Species in a Changing World , 2012 .

[88]  Xavier Collilieux,et al.  ITRF2008 plate motion model , 2011 .

[89]  Z. Sharp,et al.  Surface measurements of upper tropospheric water vapor isotopic composition on the Chajnantor Plateau, Chile , 2011 .

[90]  R. Ohlemüller,et al.  Rapid Range Shifts of Species Associated with High Levels of Climate Warming , 2011, Science.

[91]  Martin Werner,et al.  Stable water isotopes in the ECHAM5 general circulation model: Toward high‐resolution isotope modeling on a global scale , 2011 .

[92]  S. Kutz,et al.  Arctic parasitology: why should we care? , 2011, Trends in parasitology.

[93]  S. Hubbell,et al.  Species–area relationships always overestimate extinction rates from habitat loss , 2011, Nature.

[94]  Riccardo E. M. Riva,et al.  A benchmark study for glacial isostatic adjustment codes , 2011 .

[95]  C. Marshall,et al.  Has the Earth’s sixth mass extinction already arrived? , 2011, Nature.

[96]  Dan L Warren,et al.  Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. , 2011, Ecological applications : a publication of the Ecological Society of America.

[97]  D. Clayton,et al.  Condition-Specific Competition Governs the Geographic Distribution and Diversity of Ectoparasites , 2011, The American Naturalist.

[98]  Axel Rülke,et al.  On-land ice loss and glacial isostatic adjustment at the drake passage: 2003-2009 , 2011 .

[99]  G. Milne,et al.  The influence of decadal‐ to millennial‐scale ice mass changes on present‐day vertical land motion in Greenland: Implications for the interpretation of GPS observations , 2011 .

[100]  Z. Martinec,et al.  Spectral-finite element approach to viscoelastic relaxation in a spherical compressible Earth: application to GIA modelling , 2011 .

[101]  J. Lobo,et al.  Species distribution models that do not incorporate global data misrepresent potential distributions: a case study using Iberian diving beetles , 2011 .

[102]  Steven J. Phillips,et al.  The art of modelling range‐shifting species , 2010 .

[103]  E. Hoberg,et al.  Climate change, parasites and shifting boundaries , 2010, Acta Veterinaria Scandinavica.

[104]  A. Peterson,et al.  Range-wide determinants of plague distribution in North America. , 2010, The American journal of tropical medicine and hygiene.

[105]  Ian M. Howat,et al.  GPS measurements of crustal uplift near Jakobshavn Isbræ due to glacial ice mass loss , 2010 .

[106]  Gregory P. Brown,et al.  Parasites and pathogens lag behind their host during periods of host range advance. , 2010, Ecology.

[107]  Reinhard Dietrich,et al.  Rapid crustal uplift in Patagonia due to enhanced ice loss , 2010 .

[108]  Sam Veloz,et al.  Spatially autocorrelated sampling falsely inflates measures of accuracy for presence‐only niche models , 2009 .

[109]  B. Erasmus,et al.  Ensemble models predict Important Bird Areas in southern Africa will become less effective for conserving endemic birds under climate change. , 2009 .

[110]  Lian Pin Koh,et al.  The sixth mass coextinction: are most endangered species parasites and mutualists? , 2009, Proceedings of the Royal Society B: Biological Sciences.

[111]  P. O'Gorman,et al.  The physical basis for increases in precipitation extremes in simulations of 21st-century climate change , 2009, Proceedings of the National Academy of Sciences.

[112]  J. Kerr,et al.  Historically calibrated predictions of butterfly species' range shift using global change as a pseudo-experiment. , 2009, Ecology.

[113]  J. Harte,et al.  Biodiversity scales from plots to biomes with a universal species-area curve. , 2009, Ecology letters.

[114]  M. Worster,et al.  Frost flower formation on sea ice and lake ice , 2009 .

[115]  S. Warren,et al.  Effect of atmospheric water vapor on modification of stable isotopes in near-surface snow on ice sheets , 2008 .

[116]  A. Townsend Peterson,et al.  Rethinking receiver operating characteristic analysis applications in ecological niche modeling , 2008 .

[117]  J. Kouba Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1) , 2008 .

[118]  R. Real,et al.  AUC: a misleading measure of the performance of predictive distribution models , 2008 .

[119]  Shfaqat Abbas Khan,et al.  Geodetic measurements of postglacial adjustments in Greenland , 2008 .

[120]  F. Ayala,et al.  Homage to Linnaeus: How Many Parasites? How Many Hosts? , 2008 .

[121]  C. Scholtz,et al.  Climate change and the genus Rhipicephalus (Acari: Ixodidae) in Africa. , 2007, The Onderstepoort journal of veterinary research.

[122]  C. Nunn,et al.  A global gap analysis of infectious agents in wild primates , 2007 .

[123]  A. Townsend Peterson,et al.  The influence of spatial errors in species occurrence data used in distribution models , 2007 .

[124]  S. Oltmans,et al.  What is causing high ozone at Summit, Greenland? , 2007 .

[125]  R. Poulin,et al.  Metazoan parasite species richness in Neotropical fishes: hotspots and the geography of biodiversity , 2007, Parasitology.

[126]  M. McGeoch,et al.  EPIFAUNISTIC ARTHROPOD PARASITES OF THE FOUR-STRIPED MOUSE, RHABDOMYS PUMILIO, IN THE WESTERN CAPE PROVINCE, SOUTH AFRICA , 2007, The Journal of parasitology.

[127]  Peter D. Blanken,et al.  Nonstationarity of turbulent heat fluxes at Summit, Greenland , 2007 .

[128]  K. J. Willis,et al.  The ability of climate envelope models to predict the effect of climate change on species distributions , 2007 .

[129]  P. Hernandez,et al.  The effect of sample size and species characteristics on performance of different species distribution modeling methods , 2006 .

[130]  D. Vuuren,et al.  Will climate change affect ectoparasite species ranges , 2006 .

[131]  B. Huntley,et al.  Impacts of climate warming and habitat loss on extinctions at species' low‐latitude range boundaries , 2006 .

[132]  T. Foken 50 Years of the Monin–Obukhov Similarity Theory , 2006 .

[133]  J. Gregory,et al.  Ice-sheet contributions to future sea-level change , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[134]  A. Townsend Peterson,et al.  Novel methods improve prediction of species' distributions from occurrence data , 2006 .

[135]  H. Schuh,et al.  Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium‐Range Weather Forecasts operational analysis data , 2006 .

[136]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[137]  R. Dietrich,et al.  Present-day vertical crustal deformations in West Greenland from repeated GPS observations , 2005 .

[138]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[139]  R. DeConto,et al.  Sensitivity of Cenozoic Antarctic ice sheet variations to geothermal heat flux , 2005 .

[140]  M. Araújo,et al.  Validation of species–climate impact models under climate change , 2005 .

[141]  J. Jouzel,et al.  GRIP Deuterium Excess Reveals Rapid and Orbital-Scale Changes in Greenland Moisture Origin , 2005, Science.

[142]  S. Hudson,et al.  A Look at the Surface-Based Temperature Inversion on the Antarctic Plateau , 2005 .

[143]  B. Steinberger,et al.  On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames , 2005 .

[144]  Thomas Koop,et al.  Review of the vapour pressures of ice and supercooled water for atmospheric applications , 2005 .

[145]  Jack E. Dibb,et al.  Snow accumulation, surface height change, and firn densification at Summit, Greenland: Insights from 2 years of in situ observation , 2004 .

[146]  K. Lambeck,et al.  Constraints on the Greenland Ice Sheet since the Last Glacial Maximum from sea-level observations and glacial-rebound models , 2004 .

[147]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[148]  K. Fleming,et al.  Geoid displacement about Greenland resulting from past and present‐day mass changes in the Greenland Ice Sheet , 2004 .

[149]  O. Phillips,et al.  Extinction risk from climate change , 2004, Nature.

[150]  J. Boy,et al.  Study of the atmospheric pressure loading signal in very long baseline interferometry observations , 2003, physics/0311096.

[151]  J. Nagy,et al.  "Emerging" Parasitic Infections in Arctic Ungulates Full Access , 2004 .

[152]  Jeffrey T. Freymueller,et al.  Rapid uplift of southern Alaska caused by recent ice loss , 2004 .

[153]  T. Dawson,et al.  Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? , 2003 .

[154]  Lev Tarasov,et al.  Greenland glacial history, borehole constraints, and Eemian extent , 2003 .

[155]  James M. Thomas,et al.  Environmental isotopes in hydrogeology , 2003 .

[156]  G. Yohe,et al.  A globally coherent fingerprint of climate change impacts across natural systems , 2003, Nature.

[157]  David R. B. Stockwell,et al.  Future projections for Mexican faunas under global climate change scenarios , 2002, Nature.

[158]  O. Hoegh‐Guldberg,et al.  Ecological responses to recent climate change , 2002, Nature.

[159]  David R. B. Stockwell,et al.  Effects of sample size on accuracy of species distribution models , 2002 .

[160]  Hans-Georg Scherneck,et al.  Ocean Tide and Atmospheric Loading , 2002 .

[161]  J. Wahr,et al.  GPS measurements of vertical crustal motion in Greenland , 2001 .

[162]  K. Steffen,et al.  Sublimation on the Greenland Ice Sheet from automated weather station observations , 2001 .

[163]  I. Joughin,et al.  High Geothermal Heat Flow, Basal Melt, and the Origin of Rapid Ice Flow in Central Greenland , 2001, Science.

[164]  J. Komdeur,et al.  Feather mite loads influenced by salt exposure, age and reproductive stage in the Seychelles Warbler Acrocephalus sechellensis , 2001 .

[165]  Dapeng Zhao,et al.  Seismic structure and origin of hotspots and mantle plumes , 2001 .

[166]  J. Blanchet,et al.  Simulation of Arctic Diamond Dust, Ice Fog, and Thin Stratus Using an Explicit Aerosol–Cloud–Radiation Model , 2001 .

[167]  Z. Martinec Spectral–finite element approach to three‐dimensional viscoelastic relaxation in a spherical earth , 2000 .

[168]  G. Cumming Using habitat models to map diversity: pan‐African species richness of ticks (Acari: Ixodida) , 2000 .

[169]  R. Mittermeier,et al.  Biodiversity hotspots for conservation priorities , 2000, Nature.

[170]  E. Ivins,et al.  The influence of 5000 year-old and younger glacial mass variability on present-day crustal rebound in the Antarctic Peninsula , 2000 .

[171]  J. Lockwood,et al.  Biotic homogenization: a few winners replacing many losers in the next mass extinction. , 1999, Trends in ecology & evolution.

[172]  G. Cumming Host distributions do not limit the species ranges of most African ticks (Acari: Ixodida) , 1999, Bulletin of Entomological Research.

[173]  W. R. Peltier,et al.  Postglacial variations in the level of the sea: Implications for climate dynamics and solid‐Earth geophysics , 1998 .

[174]  T. Stocker,et al.  North atlantic oscillation dynamics recorded in greenland ice cores , 1998, Science.

[175]  J. Lawton,et al.  Making mistakes when predicting shifts in species range in response to global warming , 1998, Nature.

[176]  M. Stuiver,et al.  Oxygen 18/16 variability in Greenland snow and ice with 10 -3- to 105-year time resolution , 1997 .

[177]  J. Gat OXYGEN AND HYDROGEN ISOTOPES IN THE HYDROLOGIC CYCLE , 1996 .

[178]  L. Durden,et al.  Host–Parasite Coextinction and the Plight of Tick Conservation , 1996 .

[179]  J. Patz,et al.  Global climate change and emerging infectious diseases. , 1996, JAMA.

[180]  R. Alley,et al.  Dominant influence of atmospheric circulation on snow accumulation in Greenland over the past 18,000 years , 1995, Nature.

[181]  P. Mayewski,et al.  The Accumulation Record from the GISP2 Core as an Indicator of Climate Change Throughout the Holocene , 1994, Science.

[182]  J. Horita,et al.  Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature , 1994 .

[183]  R. Alley,et al.  Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event , 1993, Nature.

[184]  T. Coplen Normalization of oxygen and hydrogen isotope data , 1988 .

[185]  Richard B. Alley,et al.  Concerning the Deposition and Diagenesis of Strata in Polar Firn , 1988, Journal of Glaciology.

[186]  J. Jouzel,et al.  Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation , 1984 .

[187]  W. J. Morgan Hotspot Tracks and the Early Rifting of the Atlantic , 1983 .

[188]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[189]  E. F. Bradley,et al.  Flux-Profile Relationships in the Atmospheric Surface Layer , 1971 .

[190]  M. Majoube Fractionation Factor of 18O between Water Vapour and Ice , 1970, Nature.

[191]  Charles D. Keeling,et al.  The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas , 1958 .