Karp's patching algorithm on random perturbations of dense digraphs

We consider the following question. We are given a dense digraph $D_0$ with minimum in- and out-degree at least $\alpha n$, where $\alpha>0$ is a constant. We then add random edges $R$ to $D_0$ to create a digraph $D$. Here an edge $e$ is placed independently into $R$ with probability $n^{-\epsilon}$ where $\epsilon>0$ is a small positive constant. The edges of $D$ are given edge costs $C(e),e\in E(D)$, where $C(e)$ is an independent copy of the exponential mean one random variable $EXP(1)$ i.e. $\Pr(EXP(1)\geq x)=e^{-x}$. Let $C(i,j),i,j\in[n]$ be the associated $n\times n$ cost matrix where $C(i,j)=\infty$ if $(i,j)\notin E(D)$. We show that w.h.p. the patching algorithm of Karp finds a tour for the asymmetric traveling salesperson problem that is asymptotically equal to that of the associated assignment problem. Karp's algorithm runs in polynomial time.

[1]  Robert A. Krueger,et al.  On oriented cycles in randomly perturbed digraphs , 2022, 2212.10112.

[2]  A. Dudek,et al.  Powers of Hamiltonian cycles in randomly augmented Dirac graphs—The complete collection , 2022, Journal of Graph Theory.

[3]  J. Balogh,et al.  Rainbow connectivity of randomly perturbed graphs , 2021, Journal of Graph Theory.

[4]  L. Thoma,et al.  On powers of tight Hamilton cycles in randomly perturbed hypergraphs , 2020, Random Struct. Algorithms.

[5]  Alan Frieze,et al.  The Effect of Adding Randomly Weighted Edges , 2020, SIAM J. Discret. Math..

[6]  Elad Aigner-Horev,et al.  Rainbow Hamilton Cycles in Randomly Colored Randomly Perturbed Dense Graphs , 2020, SIAM J. Discret. Math..

[7]  Andrzej Dudek,et al.  High powers of Hamiltonian cycles in randomly augmented graphs , 2020, J. Graph Theory.

[8]  Emil Powierski,et al.  Ramsey properties of randomly perturbed dense graphs , 2019, 1902.02197.

[9]  Olaf Parczyk,et al.  2-universality in Randomly Perturbed Graphs , 2019, Eur. J. Comb..

[10]  Shagnik Das,et al.  Ramsey properties of randomly perturbed graphs: cliques and cycles , 2019, Combinatorics, Probability and Computing.

[11]  Jie Han,et al.  Hamiltonicity in randomly perturbed hypergraphs , 2018, J. Comb. Theory, Ser. B.

[12]  Richard Mycroft,et al.  Hamilton ℓ-Cycles in Randomly Perturbed Hypergraphs , 2018, Electron. J. Comb..

[13]  Michael Anastos,et al.  How many randomly colored edges make a randomly colored dense graph rainbow Hamiltonian or rainbow connected? , 2018, J. Graph Theory.

[14]  Daniel Dadush,et al.  A friendly smoothed analysis of the simplex method , 2017, STOC.

[15]  József Balogh,et al.  Tilings in Randomly Perturbed Dense Graphs , 2017, Combinatorics, Probability and Computing.

[16]  Julia Böttcher,et al.  Embedding spanning bounded degree subgraphs in randomly perturbed graphs , 2017, Electron. Notes Discret. Math..

[17]  Alan M. Frieze,et al.  Notes on growing a tree in a graph , 2017, Random Struct. Algorithms.

[18]  Y. Peres,et al.  Probability on Trees and Networks , 2017 .

[19]  A. Frieze,et al.  Introduction to Random Graphs , 2016 .

[20]  Benny Sudakov,et al.  Bounded-Degree Spanning Trees in Randomly Perturbed Graphs , 2015, SIAM J. Discret. Math..

[21]  Alan M. Frieze,et al.  Minimum Cost Matching in a Random Graph with Random Costs , 2015, SIAM J. Discret. Math..

[22]  Benny Sudakov,et al.  Cycles and Matchings in Randomly Perturbed Digraphs and Hypergraphs , 2015, Combinatorics, Probability and Computing.

[23]  Fan Chung Graham,et al.  Diameter of random spanning trees in a given graph , 2012, J. Graph Theory.

[24]  Benny Sudakov,et al.  How many random edges make a dense hypergraph non‐2‐colorable? , 2007, Random Struct. Algorithms.

[25]  Benny Sudakov,et al.  On smoothed analysis in dense graphs and formulas , 2006, Random Struct. Algorithms.

[26]  Roman Vershynin,et al.  Beyond Hirsch Conjecture: Walks on Random Polytopes and Smoothed Complexity of the Simplex Method , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[27]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[28]  Alan M. Frieze,et al.  Adding random edges to dense graphs , 2004, Random Struct. Algorithms.

[29]  Tom Bohman,et al.  How many random edges make a dense graph hamiltonian? , 2003, Random Struct. Algorithms.

[30]  Alan M. Frieze,et al.  The probabilistic relationship between the assignment and asymmetric traveling salesman problems , 2001, SODA '01.

[31]  D. Aldous The ζ(2) limit in the random assignment problem , 2000, Random Struct. Algorithms.

[32]  Svante Janson,et al.  One, Two and Three Times log n/n for Paths in a Complete Graph with Random Weights , 1999, Combinatorics, Probability and Computing.

[33]  David Aldous,et al.  The Random Walk Construction of Uniform Spanning Trees and Uniform Labelled Trees , 1990, SIAM J. Discret. Math..

[34]  Martin E. Dyer,et al.  On patching algorithms for random asymmetric travelling salesman problems , 1990, Math. Program..

[35]  Andrei Z. Broder,et al.  Generating random spanning trees , 1989, 30th Annual Symposium on Foundations of Computer Science.

[36]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[37]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, WG.

[38]  Peter G. Doyle,et al.  Random Walks and Electric Networks: REFERENCES , 1987 .

[39]  E. Lawler THE TRAVELING SALESMAN PROBLEM : A GUIDED TOUR OF COMBINATORIAL OPTIMIZATION , 1985 .

[40]  P. Flajolet On approximate counting , 1982 .

[41]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[42]  V. Climenhaga Markov chains and mixing times , 2013 .

[43]  Michael T. Goodrich,et al.  Algorithm design , 2001 .

[44]  Uriel Feige,et al.  A Tight Upper Bound on the Cover Time for Random Walks on Graphs , 1995, Random Struct. Algorithms.

[45]  N. Fisher,et al.  Probability Inequalities for Sums of Bounded Random Variables , 1994 .

[46]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[47]  Alan M. Frieze,et al.  The shortest-path problem for graphs with random arc-lengths , 1985, Discret. Appl. Math..