Multi-dimensional instability of dust-ion-acoustic solitary waves in a multi-ion dusty plasma

Abstract The basic features of obliquely propagating dust-ion-acoustic (DIA) solitary waves, and their multi-dimensional instability in a magnetized multi-ion dusty plasma containing hot adiabatic inertia-less electrons, cold positive and negative ions, and negatively charged static dust have been theoretically investigated by the reductive perturbation method, and the small-k perturbation expansion technique. The combined effects of electron adiabaticity, external magnetic field (obliqueness), and negative ions, which are found to significantly modify the basic properties (speed, amplitude, width, and instability) of small but finite-amplitude DIA solitary waves, are explicitly examined. It is also found that the instability criterion and the growth rate are significantly modified by the external magnetic field, the propagation directions of both the nonlinear waves and their perturbation modes, and the presence of negative ions. The implications of our results in space and laboratory dusty plasmas are briefly discussed.

[1]  A. Mamun,et al.  Multidimensional Instability of Dust-Ion-Acoustic Solitary Waves , 2008, IEEE Transactions on Plasma Science.

[2]  Abdullah Al Mamun,et al.  Dust ion-acoustic solitary waves in a dusty plasma with positive and negative ions , 2008 .

[3]  Abdullah Al Mamun Effects of adiabaticity of electrons and ions on dust-ion-acoustic solitary waves , 2008 .

[4]  R. Merlino,et al.  Ion-acoustic instability in a dusty negative ion plasma , 2007 .

[5]  Abdullah Al Mamun,et al.  Dust ion-acoustic shock waves in an adiabatic dusty plasma , 2007 .

[6]  S. Poedts,et al.  Collisional instability of the drift wave in multi-component plasmas , 2006 .

[7]  P. Shukla,et al.  Modulational instability and localized excitations involving two nonlinearly coupled upper-hybrid waves in plasmas , 2005 .

[8]  S. El-Labany,et al.  Obliquely propagating electrostatistic solitary structures in a hot magnetized dusty plasma with vortex-like electron distribution , 2004 .

[9]  J. Goree,et al.  Dusty Plasmas in the Laboratory, Industry, and Space , 2004 .

[10]  P. Shukla,et al.  Dust‐acoustic‐drift wave instability in a space dusty plasma , 2002 .

[11]  Abdullah Al Mamun,et al.  The role of dust charge fluctuations on nonlinear dust ion-acoustic waves , 2002 .

[12]  Abdullah Al Mamun,et al.  Nonlinear waves and structures in dusty plasmas , 2002 .

[13]  Abdullah Al Mamun,et al.  Cylindrical and spherical dust ion–acoustic solitary waves , 2002 .

[14]  Abdullah Al Mamun,et al.  Introduction to Dusty Plasma Physics , 2001 .

[15]  Y. Nakamura,et al.  Observation of ion-acoustic solitary waves in a dusty plasma , 2001 .

[16]  Y. Nakamura,et al.  Observation of Ion-Acoustic Shocks in a Dusty Plasma , 1999 .

[17]  P. Shukla,et al.  Instability of Dust-Acoustic Waves in Partially Ionized Collisional Dusty Gases , 1999 .

[18]  P. Shukla,et al.  Boundary effects on dust-ion-acoustic and dust-acoustic waves in collisional dusty plasmas , 1999 .

[19]  P. Shukla,et al.  Fluid equations governing the dynamics and energetics of partially ionized dusty magnetoplasmas , 1997 .

[20]  P. Shukla,et al.  Dust-acoustic waves in partially ionized dusty plasmas , 1997 .

[21]  Pieper,et al.  Dispersion of Plasma Dust Acoustic Waves in the Strong-Coupling Regime. , 1996, Physical review letters.

[22]  P. Shukla,et al.  Generalized magnetohydrodynamic equations for partially ionized dusty magnetoplasmas: Derivation and applications , 1996 .

[23]  Abdullah Al Mamun,et al.  Stability of solitary waves in a magnetized non-thermal plasma , 1996, Journal of Plasma Physics.

[24]  R. Merlino,et al.  Experiments on ion-acoustic waves in dusty plasmas , 1996 .

[25]  Ralf Siebenmorgen,et al.  The Role of Dust in the Formation of Stars , 1996 .

[26]  D. A. Mendis,et al.  COSMIC DUSTY PLASMA , 1994 .

[27]  T. Mouschovias,et al.  Ambipolar Diffusion, Interstellar Dust, and the Formation of Cloud Cores and Protostars. I. Basic Physics and Formulation of the Problem , 1993 .

[28]  P. Shukla,et al.  Large amplitude ion-acoustic solitons in a dusty plasma , 1992 .

[29]  P. Shukla,et al.  Dust ion-acoustic wave , 1992 .

[30]  V. Tsytovich,et al.  Waves in dusty plasmas , 1992 .

[31]  T. Montmerle The X-Ray and Radio Properties of Low-Mass Pre-Main Sequence Stars , 1991 .

[32]  C. Lada,et al.  Book-Review - the Physics of Star Formation and Early Stellar Evolution , 1991 .

[33]  C. Goertz,et al.  Dusty plasmas in the solar system , 1989 .

[34]  F. Sluijter,et al.  Three-dimensional stability of solitary shear kinetic Alfvén waves in a low-beta plasma , 1989, Journal of Plasma Physics.

[35]  M. Horányi,et al.  The effects of electrostatic charging on the dust distribution at Halley's Comet , 1986 .

[36]  M. Horányi,et al.  Trajectories of charged dust grains in the cometary environment , 1985 .

[37]  E. Infeld,et al.  Self-focusing of nonlinear ion-acoustic waves and solitons in magnetized plasmas , 1985, Journal of Plasma Physics.

[38]  W. Lotko,et al.  Ion-acoustic solitary waves in a magnetized plasma with arbitrary electron equation of state , 1983 .

[39]  K. Spatschek,et al.  Growth rates of bending KdV solitons , 1982, Journal of Plasma Physics.

[40]  Lou‐Chuang Lee,et al.  Nonlinear ion‐acoustic waves and solitons in a magnetized plasma , 1981 .

[41]  M. Yu,et al.  Exact solitary ion acoustic waves in a magnetoplasma , 1978 .

[42]  E. Infeld On the stability of nonlinear cold plasma waves. Part 2 , 1973, Journal of Plasma Physics.

[43]  G. Rpwlands Stability of non-linear plasma waves , 1969, Journal of Plasma Physics.