Tuning Database Configuration Parameters with iTuned

Database systems have a large number of configuration parameters that control memory distribution, I/O optimization, costing of query plans, parallelism, many aspects of logging, recovery, and other behavior. Regular users and even expert database administrators struggle to tune these parameters for good performance. The wave of research on improving database manageability has largely overlooked this problem which turns out to be hard to solve. We describe iTuned, a tool that automates the task of identifying good settings for database configuration parameters. iTuned has three novel features: (i) a technique called Adaptive Sampling that proactively brings in appropriate data through planned experiments to find high-impact parameters and high-performance parameter settings, (ii) an executor that supports online experiments in production database environments through a cycle-stealing paradigm that places near-zero overhead on the production workload; and (iii) portability across different database systems. We show the effectiveness of iTuned through an extensive evaluation based on different types of workloads, database systems, and usage scenarios.

[1]  Willy Zwaenepoel,et al.  Performance and scalability of EJB applications , 2002, OOPSLA '02.

[2]  Margo I. Seltzer,et al.  Using probabilistic reasoning to automate software tuning , 2004, SIGMETRICS '04/Performance '04.

[3]  Surajit Chaudhuri,et al.  Effective use of block-level sampling in statistics estimation , 2004, SIGMOD '04.

[4]  Leonie Kohl,et al.  Fundamental Concepts in the Design of Experiments , 2000 .

[5]  Wei Hong,et al.  The design of an acquisitional query processor for sensor networks , 2003, SIGMOD '03.

[6]  Robert Freeman Oracle Database 11g New Features , 2002 .

[7]  Ashraf Aboulnaga,et al.  Automatic virtual machine configuration for database workloads , 2008, SIGMOD Conference.

[8]  Anthony K. H. Tung,et al.  A new approach to dynamic self-tuning of database buffers , 2008, TOS.

[9]  Surajit Chaudhuri,et al.  Compressing SQL workloads , 2002, SIGMOD '02.

[10]  Helen J. Wang,et al.  Online aggregation , 1997, SIGMOD '97.

[11]  Bowei Xi,et al.  A smart hill-climbing algorithm for application server configuration , 2004, WWW '04.

[12]  Ian Witten,et al.  Data Mining , 2000 .

[13]  Mohamed F. Mokbel,et al.  SARD: A statistical approach for ranking database tuning parameters , 2008, 2008 IEEE 24th International Conference on Data Engineering Workshop.

[14]  Surajit Chaudhuri,et al.  AutoAdmin “what-if” index analysis utility , 1998, SIGMOD '98.

[15]  BabuShivnath,et al.  Tuning database configuration parameters with iTuned , 2009, VLDB 2009.

[16]  Sam Lightstone,et al.  Adaptive self-tuning memory in DB2 , 2006, VLDB.

[17]  Benoît Dageville,et al.  Oracle's SQL Performance Analyzer , 2008, IEEE Data Eng. Bull..

[18]  Gerhard Weikum,et al.  Self-tuning Database Technology and Information Services: from Wishful Thinking to Viable Engineering , 2002, VLDB.

[19]  Wei Hong,et al.  Model-Driven Data Acquisition in Sensor Networks , 2004, VLDB.

[20]  C. Ireland Fundamental concepts in the design of experiments , 1964 .

[21]  Robert B. Gramacy,et al.  tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models , 2007 .

[22]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .