Optoelectrofluidic Manipulation of Nanoparticles and Biomolecules

This paper presents optoelectrofluidic technologies for manipulation of nanoparticles and biomolecules. Optoelectrofluidics provides an elegant scheme for the programmable manipulation of particles or fluids in microenvironments based on optically induced electrokinetics. Recent progress on the optoelectrofluidic manipulation of nanoobjects, which include nanospheres, nanowires, nanotubes, and biomolecules, is introduced. Some potential applications of the optoelectrofluidic nanoparticle manipulation, such as nanoparticles separation, nanostructures manufacturing, molecular physics, and clinical diagnostics, and their future directions are also discussed.

[1]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[2]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[3]  S. D. Collins,et al.  Frequency dependence of gold nanoparticle superassembly by dielectrophoresis. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[4]  Arash Jamshidi,et al.  Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers. , 2009, Applied physics letters.

[5]  Ondrej Hovorka,et al.  Arranging matter by magnetic nanoparticle assemblers , 2005 .

[6]  T. Vo‐Dinh,et al.  Methodologies for Developing Surface-Enhanced Raman Scattering (SERS) Substrates for Detection of Chemical and Biological Molecules , 2010, IEEE Sensors Journal.

[7]  Xingyu Jiang,et al.  A miniaturized, parallel, serially diluted immunoassay for analyzing multiple antigens. , 2003, Journal of the American Chemical Society.

[8]  P. Burke,et al.  Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly. , 2004, Biosensors & bioelectronics.

[9]  Steven L Neale,et al.  NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles. , 2009, Nano letters.

[10]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[11]  Hyundoo Hwang,et al.  Experimental investigation of electrostatic particle-particle interactions in optoelectronic tweezers. , 2008, The journal of physical chemistry. B.

[12]  Kristen L. Helton,et al.  Microfluidic Overview of Global Health Issues Microfluidic Diagnostic Technologies for Global Public Health , 2006 .

[13]  E. Elson,et al.  Fluorescence correlation spectroscopy. I. Conceptual basis and theory , 1974 .

[14]  D. Eigler,et al.  Atomic and Molecular Manipulation with the Scanning Tunneling Microscope , 1991, Science.

[15]  Ming C. Wu,et al.  Massively parallel manipulation of single cells and microparticles using optical images , 2005, Nature.

[16]  David Erickson,et al.  Nanomanipulation using silicon photonic crystal resonators. , 2010, Nano letters.

[17]  Shinji Katsura,et al.  Micro manipulation of cells and DNA molecules , 1995 .

[18]  Joo H. Kang,et al.  Magnetophoretic continuous purification of single-walled carbon nanotubes from catalytic impurities in a microfluidic device. , 2007, Small.

[19]  James E Hutchison,et al.  Rapid purification and size separation of gold nanoparticles via diafiltration. , 2006, Journal of the American Chemical Society.

[20]  A. Mizuno,et al.  Stretching of long DNA molecules in the microvortex induced by laser and ac electric field , 2006 .

[21]  W. Greenleaf,et al.  Direct observation of base-pair stepping by RNA polymerase , 2005, Nature.

[22]  Stuart J. Williams,et al.  A simple, optically induced electrokinetic method to concentrate and pattern nanoparticles. , 2009, Nanoscale.

[23]  Hyundoo Hwang,et al.  Rapid and selective concentration of microparticles in an optoelectrofluidic platform. , 2009, Lab on a chip.

[24]  M.C. Wu,et al.  Operational Regimes and Physics Present in Optoelectronic Tweezers , 2008, Journal of Microelectromechanical Systems.

[25]  Chengkuo Lee,et al.  Controllability of Non-Contact Cell Manipulation by Image Dielectrophoresis (iDEP) , 2005 .

[26]  Christian Joachim,et al.  Controlled Room-Temperature Positioning of Individual Molecules: Molecular Flexure and Motion , 1996, Science.

[27]  David Erickson,et al.  Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells. , 2009, Lab on a chip.

[28]  L. Goldstein,et al.  Bead movement by single kinesin molecules studied with optical tweezers , 1990, Nature.

[29]  David Bensimon,et al.  Single-molecule analysis of DNA uncoiling by a type II topoisomerase , 2000, Nature.

[30]  Hyundoo Hwang,et al.  Optoelectrofluidic control of colloidal assembly in an optically induced electric field. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[31]  Seong-Won Nam,et al.  Programmable manipulation of motile cells in optoelectronic tweezers using a grayscale image , 2008 .

[32]  Je-Kyun Park,et al.  Optoelectrofluidic platforms for chemistry and biology. , 2011, Lab on a chip.

[33]  Do-Hyun Lee,et al.  Enhanced discrimination of normal oocytes using optically induced pulling-up dielectrophoretic force. , 2009, Biomicrofluidics.

[34]  Hsien-Chang Chang,et al.  A dielectrophoretic chip with a roughened metal surface for on-chip surface-enhanced Raman scattering analysis of bacteria. , 2010, Biomicrofluidics.

[35]  T. Thundat,et al.  Highly selective separation of DNA fragments using optically directed transport , 2010 .

[36]  Sourobh Raychaudhuri,et al.  Precise semiconductor nanowire placement through dielectrophoresis. , 2009, Nano letters.

[37]  M. Imamura,et al.  Manipulation of single fine particle in liquid by electrical force in combination with optical pressure , 1989, Conference Record of the IEEE Industry Applications Society Annual Meeting,.

[38]  David Erickson,et al.  Nanomanipulation using near field photonics. , 2011, Lab on a chip.

[39]  Thomas B. Jones,et al.  Electromechanics of Particles , 1995 .

[40]  P. Avouris,et al.  Field-Induced Nanometer- to Atomic-Scale Manipulation of Silicon Surfaces with the STM , 1991, Science.

[41]  M. Lipson,et al.  Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides , 2009, Nature.

[42]  Philip Moriarty,et al.  Manipulation of C60 molecules on a Si surface , 1995 .

[43]  Hongxing Xu,et al.  Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering , 2001 .

[44]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[45]  Hakho Lee,et al.  Microelectromagnets for the control of magnetic nanoparticles , 2001 .

[46]  Gwo-Bin Lee,et al.  Manipulation of single DNA molecules by using optically projected images. , 2009, Optics express.

[47]  Jaebum Choo,et al.  Optoelectrofluidic sandwich immunoassays for detection of human tumor marker using surface-enhanced Raman scattering. , 2010, Analytical chemistry.

[48]  Li Zhang,et al.  Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals. , 2009, Angewandte Chemie.

[49]  Aloke Kumar,et al.  Hybrid opto-electric manipulation in microfluidics-opportunities and challenges. , 2011, Lab on a chip.

[50]  R. Smalley,et al.  Controlled multistep purification of single-walled carbon nanotubes. , 2005, Nano letters.

[51]  Joachim O Rädler,et al.  Light-induced dielectrophoretic manipulation of DNA. , 2007, Biophysical journal.

[52]  Peidong Yang,et al.  Dynamic manipulation and separation of individual semiconducting and metallic nanowires. , 2008, Nature photonics.

[53]  R. Krupke,et al.  Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes , 2003, Science.

[54]  M.C. Wu,et al.  Light-Actuated AC Electroosmosis for Nanoparticle Manipulation , 2008, Journal of Microelectromechanical Systems.

[55]  Matthias Rief,et al.  Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy , 1997, Science.

[56]  Peter J. Pauzauskie,et al.  Optical trapping and integration of semiconductor nanowire assemblies in water , 2006, Nature materials.

[57]  W. Webb,et al.  Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. , 1976, Biophysical journal.

[58]  Jin Jang,et al.  Lab-on-a-display: a new microparticle manipulation platform using a liquid crystal display (LCD) , 2007 .

[59]  Hyundoo Hwang,et al.  Dynamic light-activated control of local chemical concentration in a fluid. , 2009, Analytical chemistry.

[60]  Steven L Neale,et al.  Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media. , 2010, Lab on a chip.

[61]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[62]  Jin Jang,et al.  Reduction of nonspecific surface-particle interactions in optoelectronic tweezers , 2008 .

[63]  Optically directed molecular transport and 3D isoelectric positioning of amphoteric biomolecules. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[65]  D. A. Saville,et al.  Electrophoretic assembly of colloidal crystals with optically tunable micropatterns , 2000, Nature.

[66]  Gwo-Bin Lee,et al.  Optically induced flow cytometry for continuous microparticle counting and sorting. , 2008, Biosensors & bioelectronics.

[67]  R. Rigler,et al.  Fluorescence correlation spectroscopy , 2001 .

[68]  Jin Jang,et al.  Interactive manipulation of blood cells using a lens‐integrated liquid crystal display based optoelectronic tweezers system , 2008, Electrophoresis.

[69]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[70]  A. Ajdari,et al.  Pumping liquids using asymmetric electrode arrays , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[71]  Hyundoo Hwang,et al.  Measurement of molecular diffusion based on optoelectrofluidic fluorescence microscopy. , 2009, Analytical chemistry.

[72]  Christian Santschi,et al.  Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. , 2010, Nano letters.

[73]  Yoon-Kyoung Cho,et al.  In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform. , 2011, Lab on a chip.

[74]  Hywel Morgan,et al.  Dielectrophoretic separation of nano-particles , 1997 .

[75]  David Grier,et al.  Processing carbon nanotubes with holographic optical tweezers. , 2004, Optics express.

[76]  Akira Mizuno,et al.  Opto-Electrostatic Micro-Manuplation of Cells and Fine Particles , 1991 .

[77]  Kazuhiko Kinosita,et al.  Unbinding force of a single motor molecule of muscle measured using optical tweezers , 1995, Nature.

[78]  M. Natan,et al.  Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates , 1995, Science.

[79]  H. Morgan,et al.  Ac electrokinetics: a review of forces in microelectrode structures , 1998 .