A soft relevance framework in content-based image retrieval systems

This paper presents a novel framework called fuzzy relevance feedback in interactive content-based image retrieval systems. Conventional binary labeling in relevance feedback requires crisp decisions to be made on the relevance of the retrieved images. This is restrictive as user interpretation of image similarity is imprecise and nonstationary in nature and may vary with respect to different information needs and perceptual subjectivity. It is, therefore, inadequate to model the user perception of image similarity with crisp binary logic. In view of this, we propose a soft relevance notion to integrate the users' fuzzy perception of visual contents into the framework of relevance feedback. A progressive fuzzy radial basis function network is proposed to learn the user information need by optimizing a cost function. An efficient gradient descent-based learning strategy is then employed to estimate the underlying network parameters. Experimental results based on a database of 10 000 images demonstrate the effectiveness of the proposed method.

[1]  Thomas S. Huang,et al.  One-class SVM for learning in image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[2]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[3]  Amarnath Gupta,et al.  Visual information retrieval , 1997, CACM.

[4]  Wei-Ying Ma,et al.  Learning similarity measure for natural image retrieval with relevance feedback , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[5]  Shaoping Ma,et al.  Relevance feedback in content-based image retrieval: Bayesian framework, feature subspaces, and progressive learning , 2003, IEEE Trans. Image Process..

[6]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Shih-Fu Chang,et al.  VisualSEEk: a fully automated content-based image query system , 1997, MULTIMEDIA '96.

[8]  Thierry Pun,et al.  Strategies for positive and negative relevance feedback in image retrieval , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[9]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[10]  Alex Pentland,et al.  Photobook: Content-based manipulation of image databases , 1996, International Journal of Computer Vision.

[11]  Shih-Fu Chang,et al.  Automated binary texture feature sets for image retrieval , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[12]  Markus A. Stricker,et al.  Similarity of color images , 1995, Electronic Imaging.

[13]  Suk I. Yoo,et al.  A Neural Network-Based Image Retrieval Using Nonlinear Combination of Heterogeneous Features , 2001, Int. J. Comput. Intell. Appl..

[14]  Jing Huang,et al.  Combining supervised learning with color correlograms for content-based image retrieval , 1997, MULTIMEDIA '97.

[15]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[16]  Ling Guan,et al.  Automatic machine interactions for content-based image retrieval using a self-organizing tree map architecture , 2002, IEEE Trans. Neural Networks.

[17]  Erkki Oja,et al.  PicSOM-self-organizing image retrieval with MPEG-7 content descriptors , 2002, IEEE Trans. Neural Networks.

[18]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[19]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[20]  Wei-Ying Ma,et al.  Learning a semantic space from user's relevance feedback for image retrieval , 2003, IEEE Trans. Circuits Syst. Video Technol..

[21]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[22]  Nuno Vasconcelos,et al.  Learning from User Feedback in Image Retrieval Systems , 1999, NIPS.

[23]  Edward Y. Chang,et al.  Support vector machine active learning for image retrieval , 2001, MULTIMEDIA '01.

[24]  Ingemar J. Cox,et al.  The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments , 2000, IEEE Trans. Image Process..

[25]  Arnold W. M. Smeulders,et al.  PicToSeek: combining color and shape invariant features for image retrieval , 2000, IEEE Trans. Image Process..

[26]  Thomas S. Huang,et al.  Content-based image retrieval with relevance feedback in MARS , 1997, Proceedings of International Conference on Image Processing.

[27]  J. Friedman Regularized Discriminant Analysis , 1989 .

[28]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  J. Nazuno Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .

[30]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[31]  Thomas S. Huang,et al.  Relevance feedback in image retrieval: A comprehensive review , 2003, Multimedia Systems.

[32]  Thomas S. Huang,et al.  Optimizing learning in image retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[33]  Qi Tian,et al.  Discriminant-EM algorithm with application to image retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[34]  Thomas S. Huang,et al.  Small sample learning during multimedia retrieval using BiasMap , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.