Fully Computable Error Bounds for Eigenvalue Problem

This paper is concerned with the computable error estimates for the eigenvalue problem which is solved by the general conforming finite element methods on the general meshes. Based on the computable error estimate, we can give an asymptotically lower bound of the general eigenvalues. Furthermore, we also give a guaranteed upper bound of the error estimates for the first eigenfunction approximation and a guaranteed lower bound of the first eigenvalue based on computable error estimator. Some numerical examples are presented to validate the theoretical results deduced in this paper.

[1]  Morten Hjorth-Jensen Eigenvalue Problems , 2021, Explorations in Numerical Analysis.

[2]  Xuefeng Liu A framework of verified eigenvalue bounds for self-adjoint differential operators , 2015, Appl. Math. Comput..

[3]  Hehu Xie,et al.  A full multigrid method for eigenvalue problems , 2014, J. Comput. Phys..

[4]  Hehu Xie,et al.  A posterior error estimator and lower bound of a nonconforming finite element method , 2014, J. Comput. Appl. Math..

[5]  Carsten Carstensen,et al.  Guaranteed lower bounds for eigenvalues , 2014, Math. Comput..

[6]  Hehu Xie,et al.  A type of multilevel method for the Steklov eigenvalue problem , 2014 .

[7]  Tomás Vejchodský,et al.  Two-Sided Bounds for Eigenvalues of Differential Operators with Applications to Friedrichs, Poincaré, Trace, and Similar Constants , 2013, SIAM J. Numer. Anal..

[8]  Jun Hu,et al.  The Lower Bounds for Eigenvalues of Elliptic Operators --By Nonconforming Finite Element Methods , 2011, 1112.1145.

[9]  Carsten Carstensen,et al.  Guaranteed lower eigenvalue bounds for the biharmonic equation , 2014, Numerische Mathematik.

[10]  Hehu Xie,et al.  Recent results on lower bounds of eigenvalue problems by nonconforming finite element methods , 2013 .

[11]  Xuefeng Liu,et al.  Verified Eigenvalue Evaluation for the Laplacian over Polygonal Domains of Arbitrary Shape , 2012, SIAM J. Numer. Anal..

[12]  G. Burton Sobolev Spaces , 2013 .

[13]  Tomás Vejchodský,et al.  Complementarity based a posteriori error estimates and their properties , 2012, Math. Comput. Simul..

[14]  Hehu Xie,et al.  Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods , 2011, 1109.5977.

[15]  Xie He-hu The Asymptotic Lower Bounds of Eigenvalue Problems by Nonconforming Finite Element Methods , 2012 .

[16]  Tomaÿs Vejchodsky,et al.  COMPUTING UPPER BOUNDS ON FRIEDRICHS' CONSTANT , 2012 .

[17]  F. Chatelin Spectral approximation of linear operators , 2011 .

[18]  Zhimin Zhang,et al.  Eigenvalue approximation from below using non-conforming finite elements , 2010 .

[19]  S. Repin A Posteriori Estimates for Partial Differential Equations , 2008 .

[20]  Pekka Neittaanmäki,et al.  Reliable Methods for Computer Simulation: Error Control and a Posteriori Estimates , 2004 .

[21]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[22]  R. Durán,et al.  ASYMPTOTIC LOWER BOUNDS FOR EIGENVALUES BY NONCONFORMING FINITE ELEMENT METHODS , 2004 .

[23]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[24]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[25]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[26]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[27]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[28]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[29]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[30]  Ivan Hlaváček,et al.  Convergence of a finite element method based on the dual variational formulation , 1976 .

[31]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .