Fully Computable Error Bounds for Eigenvalue Problem
暂无分享,去创建一个
Hehu Xie | Ning Zhang | Meiling Yue | Hehu Xie | Meiling Yue | Ning Zhang
[1] Morten Hjorth-Jensen. Eigenvalue Problems , 2021, Explorations in Numerical Analysis.
[2] Xuefeng Liu. A framework of verified eigenvalue bounds for self-adjoint differential operators , 2015, Appl. Math. Comput..
[3] Hehu Xie,et al. A full multigrid method for eigenvalue problems , 2014, J. Comput. Phys..
[4] Hehu Xie,et al. A posterior error estimator and lower bound of a nonconforming finite element method , 2014, J. Comput. Appl. Math..
[5] Carsten Carstensen,et al. Guaranteed lower bounds for eigenvalues , 2014, Math. Comput..
[6] Hehu Xie,et al. A type of multilevel method for the Steklov eigenvalue problem , 2014 .
[7] Tomás Vejchodský,et al. Two-Sided Bounds for Eigenvalues of Differential Operators with Applications to Friedrichs, Poincaré, Trace, and Similar Constants , 2013, SIAM J. Numer. Anal..
[8] Jun Hu,et al. The Lower Bounds for Eigenvalues of Elliptic Operators --By Nonconforming Finite Element Methods , 2011, 1112.1145.
[9] Carsten Carstensen,et al. Guaranteed lower eigenvalue bounds for the biharmonic equation , 2014, Numerische Mathematik.
[10] Hehu Xie,et al. Recent results on lower bounds of eigenvalue problems by nonconforming finite element methods , 2013 .
[11] Xuefeng Liu,et al. Verified Eigenvalue Evaluation for the Laplacian over Polygonal Domains of Arbitrary Shape , 2012, SIAM J. Numer. Anal..
[12] G. Burton. Sobolev Spaces , 2013 .
[13] Tomás Vejchodský,et al. Complementarity based a posteriori error estimates and their properties , 2012, Math. Comput. Simul..
[14] Hehu Xie,et al. Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods , 2011, 1109.5977.
[15] Xie He-hu. The Asymptotic Lower Bounds of Eigenvalue Problems by Nonconforming Finite Element Methods , 2012 .
[16] Tomaÿs Vejchodsky,et al. COMPUTING UPPER BOUNDS ON FRIEDRICHS' CONSTANT , 2012 .
[17] F. Chatelin. Spectral approximation of linear operators , 2011 .
[18] Zhimin Zhang,et al. Eigenvalue approximation from below using non-conforming finite elements , 2010 .
[19] S. Repin. A Posteriori Estimates for Partial Differential Equations , 2008 .
[20] Pekka Neittaanmäki,et al. Reliable Methods for Computer Simulation: Error Control and a Posteriori Estimates , 2004 .
[21] R. Martin,et al. Electronic Structure: Basic Theory and Practical Methods , 2004 .
[22] R. Durán,et al. ASYMPTOTIC LOWER BOUNDS FOR EIGENVALUES BY NONCONFORMING FINITE ELEMENT METHODS , 2004 .
[23] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[24] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[25] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[26] I. Babuska,et al. Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .
[27] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[28] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[29] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[30] Ivan Hlaváček,et al. Convergence of a finite element method based on the dual variational formulation , 1976 .
[31] W. Kohn,et al. Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .