Correspondence between Resting-State Activity and Brain Gene Expression

[1]  C. Spencer,et al.  A contribution of novel CNVs to schizophrenia from a genome-wide study of 41,321 subjects: CNV Analysis Group and the Schizophrenia Working Group of the Psychiatric Genomics Consortium , 2016, bioRxiv.

[2]  M. Rietschel,et al.  Correlated gene expression supports synchronous activity in brain networks , 2015, Science.

[3]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[4]  Leonardo Collado-Torres,et al.  Developmental regulation of human cortex transcription and its clinical relevance at base resolution , 2014, Nature Neuroscience.

[5]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[6]  Hervé Abdi,et al.  Differences in Human Cortical Gene Expression Match the Temporal Properties of Large-Scale Functional Networks , 2014, PloS one.

[7]  T. Maniatis,et al.  An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex , 2014, The Journal of Neuroscience.

[8]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[9]  N. Sadato,et al.  Default mode network in young male adults with autism spectrum disorder: relationship with autism spectrum traits , 2014, Molecular Autism.

[10]  Neda Jahanshad,et al.  Whole-genome analyses of whole-brain data: working within an expanded search space , 2014, Nature Neuroscience.

[11]  Evan M. Gordon,et al.  Dysmaturation of the default mode network in autism , 2014, Human brain mapping.

[12]  Mingfeng Li,et al.  Temporal Specification and Bilaterality of Human Neocortical Topographic Gene Expression , 2014, Neuron.

[13]  Richard F. Betzel,et al.  Resting-brain functional connectivity predicted by analytic measures of network communication , 2013, Proceedings of the National Academy of Sciences.

[14]  Randy L. Buckner,et al.  The evolution of distributed association networks in the human brain , 2013, Trends in Cognitive Sciences.

[15]  S. Shi,et al.  Production and organization of neocortical interneurons , 2013, Front. Cell. Neurosci..

[16]  D. Geschwind,et al.  Cortical Evolution: Judge the Brain by Its Cover , 2013, Neuron.

[17]  E. Levanon,et al.  Human housekeeping genes, revisited. , 2013, Trends in genetics : TIG.

[18]  J. Yates,et al.  Unbiased Discovery of Glypican as a Receptor for LRRTM4 in Regulating Excitatory Synapse Development , 2013, Neuron.

[19]  Anushya Muruganujan,et al.  Large-scale gene function analysis with the PANTHER classification system , 2013, Nature Protocols.

[20]  Olaf Sporns,et al.  Making sense of brain network data , 2013, Nature Methods.

[21]  Guang-Zhong Wang,et al.  Decoding human gene expression signatures in the brain , 2013, Transcription.

[22]  Eivind Hovig,et al.  Pathway analysis of genetic markers associated with a functional MRI faces paradigm implicates polymorphisms in calcium responsive pathways , 2013, NeuroImage.

[23]  P. Khaitovich,et al.  Human brain evolution: transcripts, metabolites and their regulators , 2013, Nature Reviews Neuroscience.

[24]  D. Geschwind,et al.  Human-Specific Transcriptional Networks in the Brain , 2012, Neuron.

[25]  Robert W. Cox,et al.  AFNI: What a long strange trip it's been , 2012, NeuroImage.

[26]  D. Geschwind,et al.  Neuroscience: Genes and human brain evolution , 2012, Nature.

[27]  T. Preuss Human brain evolution: From gene discovery to phenotype discovery , 2012, Proceedings of the National Academy of Sciences.

[28]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[29]  J. Kleinman,et al.  Spatiotemporal transcriptome of the human brain , 2011, Nature.

[30]  James A. Eddy,et al.  Behavior-specific changes in transcriptional modules lead to distinct and predictable neurogenomic states , 2011, Proceedings of the National Academy of Sciences.

[31]  L. O’Connell,et al.  Genes, hormones, and circuits: An integrative approach to study the evolution of social behavior , 2011, Frontiers in Neuroendocrinology.

[32]  I. Scheffer,et al.  De novo SCN1A mutations in migrating partial seizures of infancy , 2011, Neurology.

[33]  S. Horvath,et al.  Transcriptomic Analysis of Autistic Brain Reveals Convergent Molecular Pathology , 2011, Nature.

[34]  Roded Sharan,et al.  Gene Expression in the Rodent Brain is Associated with Its Regional Connectivity , 2011, PLoS Comput. Biol..

[35]  I. Scheffer,et al.  The genetics of Dravet syndrome , 2011, Epilepsia.

[36]  R. Schneggenburger,et al.  Synaptotagmin Increases the Dynamic Range of Synapses by Driving Ca2+-Evoked Release and by Clamping a Near-Linear Remaining Ca2+ Sensor , 2011, Neuron.

[37]  D. Srivastava,et al.  Epac2-mediated dendritic spine remodeling: Implications for disease , 2011, Molecular and Cellular Neuroscience.

[38]  Leon French,et al.  Relationships between Gene Expression and Brain Wiring in the Adult Rodent Brain , 2011, PLoS Comput. Biol..

[39]  Russell A. Poldrack,et al.  Altered Functional Connectivity in Frontal Lobe Circuits Is Associated with Variation in the Autism Risk Gene CNTNAP2 , 2010, Science Translational Medicine.

[40]  R. Buxton Neuroenergetics Review Article , 2022 .

[41]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[42]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[43]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[44]  V. Calhoun,et al.  Interrater and intermethod reliability of default mode network selection , 2009, Human brain mapping.

[45]  Chaozhe Zhu,et al.  An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF , 2008, Journal of Neuroscience Methods.

[46]  D. Amit,et al.  Search for fMRI BOLD signals in networks of spiking neurons , 2007, The European journal of neuroscience.

[47]  Robert Kucharski,et al.  Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera , 2007, BMC Developmental Biology.

[48]  A. Kriegstein,et al.  Characterization of Mice with Targeted Deletion of Glycine Receptor Alpha 2 , 2006, Molecular and Cellular Biology.

[49]  Marc G Caron,et al.  Desensitization of G protein-coupled receptors and neuronal functions. , 2004, Annual review of neuroscience.

[50]  E. Bacchelli,et al.  International molecular genetic study of autism consortium (IMGSAC). Towards identification of autism susceptibility variants in the IMGSAC sample , 2004 .

[51]  E. Bacchelli,et al.  Screening of nine candidate genes for autism on chromosome 2q reveals rare nonsynonymous variants in the cAMP-GEFII gene , 2003, Molecular Psychiatry.

[52]  Paul J. Laurienti,et al.  An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets , 2003, NeuroImage.

[53]  Yukitoshi Takahashi,et al.  Mutations of sodium channel alpha subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic-clonic seizures. , 2003, Brain : a journal of neurology.

[54]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[55]  A M Graybiel,et al.  A family of cAMP-binding proteins that directly activate Rap1. , 1998, Science.

[56]  Samuel F. Berkovic,et al.  Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel ß1 subunit gene SCN1B , 1998, Nature Genetics.