In the notion of communication system resource provision specifically, beam-forming is a concept of proficient utilization of the power of transmission. Network densification and massive MIMO allows us to control the power efficiency and can be effectively distributed among different users by reducing cost. We presented a practical scenario for the performance of massive MIMO and multi-small cell system to analyze the overall performance of the system. Our work is based on the resource allocation with optimal structural constraints to maintain the cost effectiveness while considering economic implications. The base stations located far away from the users receive attenuated signals and give rise to path loss, whereas the problems of inter cell interference also arise due to transmission from a base station to others cells. The performance of the cellular system can be enhanced with the combination of massive Mimo and small cells, where we simulate and also provide an analysis on practical system with optimal and low complexity beam-forming. The proposed scenario illustrates a structure with an optimal linear transmit beamforming regarding an efficient number of parameters to not lose optimality, which is extendable to designate any specific cellular network in consideration. Our approach exploited schemes with low complexity that are facilitating in complete solution formation, and tested them in various and all possible cases and scenarios.