First Measurement of a 127 keV Neutron Field with a $\mu$-TPC Spectrometer

In order to measure the energy of neutron fields, with energy ranging from 8 keV to 1 MeV, a new primary standard is being developed at the IRSN (Institute for Radioprotection and Nuclear Safety). This project, -TPC (Micro Time Projection Chamber), carried out in collaboration with the LPSC (Laboratoire de Physique Subatomique et de Cosmologie), is based on the nuclear recoil detector principle. The instrument is presented with the associated method to measure the neutron energy. This article emphasizes the proton energy calibration procedure and energy measurements of a neutron field produced at 127 keV with the IRSN facility AMANDE.

[1]  MIMAC : A micro-tpc matrix for directional detection of dark matter , 2012 .

[2]  V. Gressier,et al.  New IRSN facilities for neutron production , 2003 .

[3]  V. Lacoste,et al.  Experimental characterization of the IRSN long counter for the determination of the neutron fluence reference values at the AMANDE facility , 2010 .

[4]  B. Wiegel,et al.  Characterisation of the IRSN CANEL/T400 facility producing realistic neutron fields for calibration and test purposes. , 2004, Radiation protection dosimetry.

[5]  A. Zimbal,et al.  Experimental comparison of 241Am-Be neutron fluence energy distributions. , 2007, Radiation protection dosimetry.

[6]  P. Colas,et al.  Ionization Quenching Factor Measurement of Helium 4 , 2008, 0810.1137.

[7]  O. Bourrion,et al.  Quenching factor measurement in low pressure gas detector for directional dark matter search , 2011, 1110.2042.

[8]  J. Richer,et al.  Data acquisition electronics and reconstruction software for real time 3D track reconstruction within the MIMAC project , 2011, 1110.4348.

[9]  H. Klein,et al.  Characterisation of spherical recoil proton proportional counters used for neutron spectrometry , 2002 .

[10]  M.M.R. Williams,et al.  The stopping and ranges of ions in matter , 1978 .

[11]  J. Billard,et al.  Three-dimensional track reconstruction for directional Dark Matter detection , 2012, 1202.3372.

[12]  L. Lebreton,et al.  PERFORMANCES OF DIGITAL ACQUISITION FOR A BC501A DETECTOR SYSTEM , 2007 .

[13]  V. Lacoste,et al.  AMANDE: a new facility for monoenergetic neutron fields production between 2 keV and 20 MeV. , 2004, Radiation protection dosimetry.

[14]  J. Billard,et al.  Assessing the discovery potential of directional detection of dark matter , 2011, 1110.6079.

[15]  R. De Oliveira,et al.  Micromegas in a bulk , 2006 .

[16]  J. Billard Détection directionnelle de matière sombre avec MIMAC , 2012 .

[17]  S. F. Biagi,et al.  MONTE CARLO SIMULATION OF ELECTRON DRIFT AND DIFFUSION IN COUNTING GASES UNDER THE INFLUENCE OF ELECTRIC AND MAGNETIC FIELDS , 1999 .

[18]  René Dybkaer,et al.  An outline for a vocabulary of nominal properties and examinations – basic and general concepts and associated terms , 2010, Clinical chemistry and laboratory medicine.

[19]  Neutron recoils in the DRIFT detector , 2003 .

[20]  J. Richer,et al.  A {\mu}-TPC detector for the characterization of low energy neutron fields , 2012, 1203.2443.

[21]  J. Richer,et al.  Development of a front end ASIC for Dark Matter directional detection with MIMAC , 2009, 0912.0186.