Computing pure strategy nash equilibria in compact symmetric games

We analyze the complexity of computing pure strategy Nash equilibria (PSNE) in symmetric games with a fixed number of actions. We restrict ourselves to "compact" representations, meaning that the number of players can be exponential in the representation size. We show that in the general case, where utility functions are represented as arbitrary circuits, the problem of deciding the existence of PSNE is NP-complete. For the special case of games with two actions, we show that there always exists a PSNE and give a polynomial-time algorithm for finding one. We then focus on a specific compact representation: piecewise-linear utility functions. We give polynomial-time algorithms for finding a sample PSNE, counting the number of PSNEs, and also provide an FPTAS for finding social-welfare-maximizing equilibria. We extend our piecewise-linear representation to achieve what we believe to be the first compact representation for parameterized families of (symmetric) games. We provide methods for answering questions about a parameterized family without needing to solve each game from the family separately.

[1]  Grant Schoenebeck,et al.  The Computational Complexity of Nash Equilibria in Concisely Represented Games , 2012, TOCT.

[2]  Christos H. Papadimitriou,et al.  The complexity of pure Nash equilibria , 2004, STOC '04.

[3]  Dominique Lepelley,et al.  On Ehrhart polynomials and probability calculations in voting theory , 2008, Soc. Choice Welf..

[4]  Tim Roughgarden,et al.  The price of stability for network design with fair cost allocation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[5]  Constantinos Daskalakis,et al.  On the complexity of Nash equilibria of action-graph games , 2009, SODA.

[6]  Alexander I. Barvinok,et al.  A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[7]  Jesús A. De Loera,et al.  Pareto Optima of Multicriteria Integer Linear Programs , 2009, INFORMS J. Comput..

[8]  Tim Roughgarden,et al.  Selfish routing and the price of anarchy , 2005 .

[9]  Christos H. Papadimitriou,et al.  Computing Equilibria in Anonymous Games , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[10]  Christos H. Papadimitriou,et al.  Computing pure nash equilibria in graphical games via markov random fields , 2006, EC '06.

[11]  Ramon E. Moore Global optimization to prescribed accuracy , 1991 .

[12]  Paul W. Goldberg,et al.  The Complexity of Computing a Nash Equilibrium , 2009, SIAM J. Comput..

[13]  John Langford,et al.  Correlated equilibria in graphical games , 2003, EC '03.

[14]  Daniel M. Reeves,et al.  Notes on Equilibria in Symmetric Games , 2004 .

[15]  A. Barvinok,et al.  Short rational generating functions for lattice point problems , 2002, math/0211146.

[16]  Tim Roughgarden,et al.  Algorithmic Game Theory , 2007 .

[17]  J. Nash NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.

[18]  Joaquim Gabarró Vallès,et al.  Pure Nash equilibria in games with a large number of actions , 2004 .

[19]  Christos H. Papadimitriou,et al.  Three-Player Games Are Hard , 2005, Electron. Colloquium Comput. Complex..

[20]  Vincent Loechner,et al.  Analytical computation of Ehrhart polynomials: enabling more compiler analyses and optimizations , 2004, CASES '04.

[21]  Christos H. Papadimitriou,et al.  Computing correlated equilibria in multi-player games , 2005, STOC '05.

[22]  Michael L. Littman,et al.  Graphical Models for Game Theory , 2001, UAI.

[23]  Kevin Leyton-Brown,et al.  Computing Nash Equilibria of Action-Graph Games , 2004, UAI.

[24]  E. L. Lawler,et al.  Branch-and-Bound Methods: A Survey , 1966, Oper. Res..

[25]  J. D. Loera The many aspects of counting lattice points in polytopes , 2005 .

[26]  Jesús A. De Loera,et al.  Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..

[27]  Constantinos Daskalakis,et al.  Computing Pure Nash Equilibria via Markov Random Fields , 2005, ArXiv.

[28]  S. Robins,et al.  Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra , 2007 .

[29]  Christos H. Papadimitriou,et al.  The Game World Is Flat: The Complexity of Nash Equilibria in Succinct Games , 2006, ICALP.

[30]  Felix Brandt,et al.  Symmetries and the complexity of pure Nash equilibrium , 2009, J. Comput. Syst. Sci..

[31]  Nikhil R. Devanur,et al.  Market Equilibria in Polynomial Time for Fixed Number of Goods or Agents , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[32]  R. Rosenthal A class of games possessing pure-strategy Nash equilibria , 1973 .

[33]  Christos H. Papadimitriou,et al.  Worst-case equilibria , 1999 .

[34]  Xiaotie Deng,et al.  Settling the Complexity of Two-Player Nash Equilibrium , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[35]  Yoav Shoham,et al.  Multiagent Systems - Algorithmic, Game-Theoretic, and Logical Foundations , 2009 .

[36]  Kevin Leyton-Brown,et al.  Computing Pure Nash Equilibria in Symmetric Action Graph Games , 2007, AAAI.

[37]  Maurice Queyranne,et al.  Rational Generating Functions and Integer Programming Games , 2008, Oper. Res..