Design of a MEMS micromirror actuated by electrostatic repulsive force

Abstract A microelectromechanical system (MEMS) micromirror actuated by electrostatic repulsive force is demonstrated. The design is based on the principle that an asymmetric electric field produced by special layout of the electrodes can generate a repulsive force, which moves the mirror surface upwards. The factors affecting the magnitude of the driving force of the micromirror actuator are analyzed by FEA. The prototype is fabricated using a commercial available surface micromachining process and successfully tested using a Zygo NewView7300 interferometer. The displacement of the micromirror reaches 1.2 μm at 60 V.

[1]  R.W. Dutton,et al.  Electrostatic micromechanical actuator with extended range of travel , 2000, Journal of Microelectromechanical Systems.

[2]  M. Menu,et al.  Effects of lens aberrations in some experiments of speckle interferometry , 1979 .

[3]  B. Levine,et al.  Adaptive optic correction using microelectromechanical deformable mirrors , 2002 .

[4]  F. Renero-Carrillo,et al.  Two-dimensional optical micro-scanner on silicon technology , 2010 .

[5]  Thomas E. Milner,et al.  Fast 3D in vivo swept-source optical coherence tomography using a two-axis MEMS scanning micromirror , 2008 .

[6]  David J. Brady,et al.  Optical properties of surface micromachined mirrors with etch holes , 1999 .

[7]  K. R. Farmer,et al.  Extending the travel range of electrostatic micro-mirrors using insulator coated electrodes , 2000, 2000 IEEE/LEOS International Conference on Optical MEMS (Cat. No.00EX399).

[8]  Stefan M. Weber,et al.  Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet , 2009 .

[9]  N. C. Tien,et al.  Electrical breakdown across micron scale gaps in MEMS structures , 2006, SPIE MOEMS-MEMS.

[10]  E. S. Hung,et al.  Extending the travel range of analog-tuned electrostatic actuators , 1999 .

[11]  R. D. Ferguson,et al.  Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  Patrick Lanzoni,et al.  Electrostatic micro-deformable mirror for adaptive optics , 2006, SPIE Astronomical Telescopes + Instrumentation.

[13]  Siyuan He,et al.  Large-stroke microelectrostatic actuators for vertical translation of micromirrors used in adaptive optics , 2005, IEEE Transactions on Industrial Electronics.

[14]  Jin-Chern Chiou,et al.  A Micromirror With Large Static Rotation and Vertical Actuation , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  R.F. Wolffenbuttel,et al.  Using dynamic voltage drive in a parallel-plate electrostatic actuator for full-gap travel range and positioning , 2006, Journal of Microelectromechanical Systems.

[16]  Young-Ho Cho,et al.  Laterally driven electrostatic repulsive-force microactuators using asymmetric field distribution , 2001 .

[17]  Siyuan He,et al.  Design, Modeling, and Demonstration of a MEMS Repulsive-Force Out-of-Plane Electrostatic Micro Actuator , 2008, Journal of Microelectromechanical Systems.

[18]  Timothy A. Cook,et al.  Design and development of a 331-segment tip–tilt–piston mirror array for space-based adaptive optics , 2007 .

[19]  A. Dehe,et al.  Current drive methods to extend the range of travel of electrostatic microactuators beyond the voltage pull-in point , 2002 .

[20]  Donald Gavel MEMS for the next generation of giant astronomical telescopes , 2006, SPIE MOEMS-MEMS.

[21]  Suhas S. Mohite,et al.  Squeeze Film Effects in MEMS Devices , 2007 .