Scaling the SIESTA magnetohydrodynamics equilibrium code

We report the results of a scaling effort that increases both the speed and resolution of the SIESTA magnetohydrodynamics equilibrium code. SIESTA is capable of computing three‐dimensional plasma equilibria with magnetic islands at high spatial resolutions for toroidally confined plasmas. Starting with a small‐scale parallel implementation, we identified scale‐dependent bottlenecks of the code and developed scalable alternatives for each performance‐significant functionality, cumulatively improving both its runtime speed (on the same number of processors) and its scalability (across larger number of processors) by an order of magnitude. The net outcome is an improvement in speed by over 10‐fold, utilizing a few thousand processors, enabling SIESTA to simulate high spatial‐resolution scenarios in under an hour for the first time. Copyright © 2012 John Wiley & Sons, Ltd.

[1]  R. Chodura,et al.  A 3D Code for MHD Equilibrium and Stability , 1981 .

[2]  Luis Chacon,et al.  An optimal, parallel, fully implicit Newton–Krylov solver for three-dimensional viscoresistive magnetohydrodynamicsa) , 2008 .

[3]  J. C. Whitson,et al.  Steepest‐descent moment method for three‐dimensional magnetohydrodynamic equilibria , 1983 .

[4]  E. A. Lazarus,et al.  V3FIT: a code for three-dimensional equilibrium reconstruction , 2009 .

[5]  W. Park,et al.  Plasma simulation studies using multilevel physics models , 1999 .

[6]  Vipin Kumar,et al.  Introduction to Parallel Computing , 1994 .

[7]  Octavio Betancourt,et al.  BETAS, a spectral code for three-dimensional magnetohydrodynamic equilibrium and nonlinear stability calculations , 1988 .

[8]  S. Hirshman,et al.  SIESTA: A scalable iterative equilibrium solver for toroidal applications , 2011 .

[9]  Julien Langou,et al.  Algorithm 842: A set of GMRES routines for real and complex arithmetics on high performance computers , 2005, TOMS.

[10]  L. Lao,et al.  Reconstruction of current profile parameters and plasma shapes in tokamaks , 1985 .

[11]  David E Williamson,et al.  Physics issues of compact drift optimized stellarators , 2001 .

[12]  Luc Giraud,et al.  A Set of GMRES Routines for Real and Complex Arithmetics , 1997 .

[13]  Steven J. Plimpton,et al.  Nonlinear magnetohydrodynamics simulation using high-order finite elements , 2004 .

[14]  Henry S. Greenside,et al.  Calculation of three-dimensional MHD equilibria with islands and stochastic regions , 1986 .

[15]  Kenji Harafuji,et al.  Computational study of three-dimensional magnetohydrodynamic equilibria in toroidal helical systems , 1987 .

[16]  Jack Dongarra,et al.  ScaLAPACK user's guide , 1997 .

[17]  C. Kelley,et al.  Convergence Analysis of Pseudo-Transient Continuation , 1998 .

[18]  Vickie E. Lynch,et al.  BCYCLIC: A parallel block tridiagonal matrix cyclic solver , 2010, J. Comput. Phys..

[19]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .