Increased locus coeruleus tonic activity causes disengagement from a patch-foraging task

[1]  J. Cohen,et al.  Catecholamine-Mediated Increases in Gain Enhance the Precision of Cortical Representations , 2016, The Journal of Neuroscience.

[2]  Kyle S. Smith,et al.  Dreadds: Use and Application in Behavioral Neuroscience Section 1: Advantages for Behavioral Neuroscience Dreadds Involve the Use of Receptor Proteins Derived from Targeted Mutagenesis of Endogenous G-protein Coupled Receptor , 2022 .

[3]  J. Gold,et al.  Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex , 2016, Neuron.

[4]  Helios De Rosario-Martinez Post-Hoc Interaction Analysis , 2015 .

[5]  Adam J. Calhoun,et al.  The foraging brain , 2015, Current Opinion in Behavioral Sciences.

[6]  J. McCall,et al.  CRH Engagement of the Locus Coeruleus Noradrenergic System Mediates Stress-Induced Anxiety , 2015, Neuron.

[7]  S. Bouret,et al.  Noradrenaline and Dopamine Neurons in the Reward/Effort Trade-Off: A Direct Electrophysiological Comparison in Behaving Monkeys , 2015, The Journal of Neuroscience.

[8]  N. Daw,et al.  Learning the opportunity cost of time in a patch-foraging task , 2015, Cognitive, Affective, & Behavioral Neuroscience.

[9]  K. Branson,et al.  Behavioral Variability through Stochastic Choice and Its Gating by Anterior Cingulate Cortex , 2014, Cell.

[10]  Gary Aston-Jones,et al.  Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia , 2014, Proceedings of the National Academy of Sciences.

[11]  Jonathan D. Cohen,et al.  The effects of neural gain on attention and learning , 2013, Nature Neuroscience.

[12]  S. Sara,et al.  Orienting and Reorienting: The Locus Coeruleus Mediates Cognition through Arousal , 2012, Neuron.

[13]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[14]  John M. Pearson,et al.  Neuronal basis of sequential foraging decisions in a patchy environment , 2011, Nature Neuroscience.

[15]  Sander Nieuwenhuis,et al.  Pupil Diameter Predicts Changes in the Exploration–Exploitation Trade-off: Evidence for the Adaptive Gain Theory , 2011, Journal of Cognitive Neuroscience.

[16]  K. Deisseroth,et al.  Tuning arousal with optogenetic modulation of locus coeruleus neurons , 2010, Nature Neuroscience.

[17]  Mark S. Gilzenrat,et al.  Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function , 2010, Cognitive, affective & behavioral neuroscience.

[18]  M. Nicolelis,et al.  Remote Control of Neuronal Activity in Transgenic Mice Expressing Evolved G Protein-Coupled Receptors , 2009, Neuron.

[19]  Eric Shea-Brown,et al.  Optimization of Decision Making in Multilayer Networks: The Role of Locus Coeruleus , 2008, Neural Computation.

[20]  H. Eichenbaum,et al.  Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting , 2008, Neuroscience.

[21]  B. Roth,et al.  Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand , 2007, Proceedings of the National Academy of Sciences.

[22]  S. Sara,et al.  Network reset: a simplified overarching theory of locus coeruleus noradrenaline function , 2005, Trends in Neurosciences.

[23]  Jonathan D. Cohen,et al.  An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. , 2005, Annual review of neuroscience.

[24]  Angela J. Yu,et al.  Uncertainty, Neuromodulation, and Attention , 2005, Neuron.

[25]  Jonathan D. Cohen,et al.  Phasic Activation of Monkey Locus Ceruleus Neurons by Simple Decisions in a Forced-Choice Task , 2004, The Journal of Neuroscience.

[26]  S. Sara,et al.  Reward expectation, orientation of attention and locus coeruleus‐medial frontal cortex interplay during learning , 2004, The European journal of neuroscience.

[27]  O. Isacson,et al.  A high-efficiency synthetic promoter that drives transgene expression selectively in noradrenergic neurons. , 2001, Human gene therapy.

[28]  J. Cohen,et al.  The role of locus coeruleus in the regulation of cognitive performance. , 1999, Science.

[29]  G. Aston-Jones,et al.  Conditioned responses of monkey locus coeruleus neurons anticipate acquisition of discriminative behavior in a vigilance task , 1997, Neuroscience.

[30]  G. Aston-Jones,et al.  Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  Alex Kacelnik,et al.  Optimal foraging and timing processes in the starling, Sturnus vulgaris: effect of inter-capture interval , 1992, Animal Behaviour.

[32]  A. Kacelnik,et al.  Psychological mechanisms and the Marginal Value Theorem: effect of variability in travel time on patch exploitation , 1992, Animal Behaviour.

[33]  F. Bloom,et al.  Nonrepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  G. Pyke Optimal foraging in hummingbirds : testing the marginal value theorem , 1978 .

[35]  E. Charnov Optimal foraging, the marginal value theorem. , 1976, Theoretical population biology.

[36]  D. Bates,et al.  fitting linear mixed effects models using lme 4 arxiv , 2014 .

[37]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[38]  Kwang-Soo Kim,et al.  Genetically engineered dopamine beta-hydroxylase gene promoters with better PHOX2-binding sites drive significantly enhanced transgene expression in a noradrenergic cell-specific manner. , 2005, Molecular therapy : the journal of the American Society of Gene Therapy.

[39]  G. Pyke Optimal Foraging Theory: A Critical Review , 1984 .