DETECTION OF INDOOR ATTACHED EQUIPMENT FROM TLS POINT CLOUDS USING PLANAR REGION BOUNDARY
暂无分享,去创建一个
Abstract. Laser scanning technology is useful to create accurate three-dimensional models of indoor environments for applications such as maintenance, inspection, renovation, and simulations. In this paper, a detection method of indoor attached equipment such as windows, lightings, and fire alarms, from TLS point clouds, is proposed. In order to make the method robust against to the lack of points of equipment surface, a footprint of the equipment is used for detection, because the entire or a part of the footprint boundary shapes explicitly appear as the boundary of base surfaces, i.e. walls for windows, and ceilings for lightings and fire alarms. In the method, first, base surface regions are extracted from given TLS point clouds of indoor environments. Then, footprint boundary points are detected from the region boundary points. Finally, target equipment is detected by fitting or voting using given target footprint shapes. The features of our method are footprint boundary point extraction considering occlusions, shape fitting with adaptive parameters based on point intervals, and robust shape detection by voting from multiple footprint boundary candidates. The effectiveness of the proposed method is evaluated using TLS point clouds.