Metal–Oxide RRAM

In this paper, recent progress of binary metal-oxide resistive switching random access memory (RRAM) is reviewed. The physical mechanism, material properties, and electrical characteristics of a variety of binary metal-oxide RRAM are discussed, with a focus on the use of RRAM for nonvolatile memory application. A review of recent development of large-scale RRAM arrays is given. Issues such as uniformity, endurance, retention, multibit operation, and scaling trends are discussed.

[1]  J. Yang,et al.  High switching endurance in TaOx memristive devices , 2010 .

[2]  Wei Wang,et al.  FPGA Based on Integration of CMOS and RRAM , 2011, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[3]  Pang-Shiu Chen,et al.  $\hbox{HfO}_{x}$ Bipolar Resistive Memory With Robust Endurance Using AlCu as Buffer Electrode , 2009, IEEE Electron Device Letters.

[4]  S. Seo,et al.  Different resistance switching behaviors of NiO thin films deposited on Pt and SrRuO3 electrodes , 2009 .

[5]  N. Huby,et al.  Low Temperature Rectifying Junctions for Crossbar Non-Volatile Memory Devices , 2009, 2009 IEEE International Memory Workshop.

[6]  Sung In Kim,et al.  Reversible resistive switching behaviors in NiO nanowires , 2008 .

[7]  Hisashi Shima,et al.  Resistive Random Access Memory (ReRAM) Based on Metal Oxides , 2010, Proceedings of the IEEE.

[8]  Abbas El Gamal,et al.  Nonvolatile 3D-FPGA with monolithically stacked RRAM-based configuration memory , 2012, 2012 IEEE International Solid-State Circuits Conference.

[9]  P. Zhou,et al.  Improvement of Resistive Switching in $\hbox{Cu}_{x} \hbox{O}$ Using New RESET Mode , 2008, IEEE Electron Device Letters.

[10]  R. Waser,et al.  Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt ∕ TiO2 ∕ Pt Stack , 2007 .

[11]  Jiale Liang,et al.  Cross-Point Memory Array Without Cell Selectors—Device Characteristics and Data Storage Pattern Dependencies , 2010, IEEE Transactions on Electron Devices.

[12]  Dae-Geun Choi,et al.  Mass fabrication of resistive random access crossbar arrays by step and flash imprint lithography , 2009, Nanotechnology.

[13]  K. Kinoshita,et al.  Consideration of switching mechanism of binary metal oxide resistive junctions using a thermal reaction model , 2007 .

[14]  M. Aoki,et al.  Sub-$\hbox{100-}\mu\hbox{A}$ Reset Current of Nickel Oxide Resistive Memory Through Control of Filamentary Conductance by Current Limit of MOSFET , 2008, IEEE Transactions on Electron Devices.

[15]  Heng-Yuan Lee,et al.  Three-Dimensional $\hbox{4F}^{2}$ ReRAM With Vertical BJT Driver by CMOS Logic Compatible Process , 2011, IEEE Transactions on Electron Devices.

[16]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[17]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[18]  J. G. Wu,et al.  A novel CuxSiyO resistive memory in logic technology with excellent data retention and resistance distribution for embedded applications , 2010, 2010 Symposium on VLSI Technology.

[19]  H. Wong,et al.  $\hbox{Al}_{2}\hbox{O}_{3}$-Based RRAM Using Atomic Layer Deposition (ALD) With 1-$\mu\hbox{A}$ RESET Current , 2010, IEEE Electron Device Letters.

[20]  Y. Shih,et al.  A forming-free WOx resistive memory using a novel self-aligned field enhancement feature with excellent reliability and scalability , 2010, 2010 International Electron Devices Meeting.

[21]  W. Marsden I and J , 2012 .

[22]  R. Meyer,et al.  Oxide dual-layer memory element for scalable non-volatile cross-point memory technology , 2008, 2008 9th Annual Non-Volatile Memory Technology Symposium (NVMTS).

[23]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[24]  Shimeng Yu,et al.  On the stochastic nature of resistive switching in metal oxide RRAM: Physical modeling, monte carlo simulation, and experimental characterization , 2011, 2011 International Electron Devices Meeting.

[25]  N. Xu,et al.  Bipolar switching behavior in TiN/ZnO/Pt resistive nonvolatile memory with fast switching and long retention , 2008 .

[26]  Xin Peng Wang,et al.  Optimized Ni Oxidation in 80-nm Contact Holes for Integration of Forming-Free and Low-Power Ni/NiO/Ni Memory Cells , 2009, IEEE Transactions on Electron Devices.

[27]  Jang‐Sik Lee,et al.  Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices , 2008 .

[28]  Heng-Yuan Lee,et al.  A 5ns fast write multi-level non-volatile 1 K bits RRAM memory with advance write scheme , 2009, 2009 Symposium on VLSI Circuits.

[29]  Sunae Seo,et al.  Observation of electric-field induced Ni filament channels in polycrystalline NiOx film , 2007 .

[30]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[31]  D. Gilmer,et al.  Metal oxide resistive memory switching mechanism based on conductive filament properties , 2011 .

[32]  Sung-Yool Choi,et al.  Direct observation of microscopic change induced by oxygen vacancy drift in amorphous TiO2 thin films , 2010 .

[33]  D. Kwong,et al.  Oxide-based RRAM: Physical based retention projection , 2010, 2010 Proceedings of the European Solid State Device Research Conference.

[34]  Hyunsang Hwang,et al.  Diode-less nano-scale ZrOx/HfOx RRAM device with excellent switching uniformity and reliability for high-density cross-point memory applications , 2010, 2010 International Electron Devices Meeting.

[35]  J. Nodin,et al.  Back-end-of-line integration approaches for resistive memories , 2009, 2009 IEEE International Interconnect Technology Conference.

[36]  S. Haddad,et al.  Erasing characteristics of Cu2O metal-insulator-metal resistive switching memory , 2008 .

[37]  C.J. Kim,et al.  Stack friendly all-oxide 3D RRAM using GaInZnO peripheral TFT realized over glass substrates , 2008, 2008 IEEE International Electron Devices Meeting.

[38]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[39]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[40]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[41]  S.S. Wong,et al.  RESET Mechanism of TiOx Resistance-Change Memory Device , 2009, IEEE Electron Device Letters.

[42]  I. Yoo,et al.  2-stack 1D-1R Cross-point Structure with Oxide Diodes as Switch Elements for High Density Resistance RAM Applications , 2007, 2007 IEEE International Electron Devices Meeting.

[43]  U-In Chung,et al.  Improvement of resistive memory switching in NiO using IrO2 , 2006 .

[44]  Kuo-Pin Chang,et al.  Multi-Level Switching Characteristics for WOX Resistive RAM (RRAM) , 2008 .

[45]  W. E. Beadle,et al.  Switching properties of thin Nio films , 1964 .

[46]  G. Burr,et al.  Highly-scalable novel access device based on Mixed Ionic Electronic conduction (MIEC) materials for high density phase change memory (PCM) arrays , 2010, 2010 Symposium on VLSI Technology.

[47]  J. Simmons Conduction in thin dielectric films , 1971 .

[48]  Yukio Hayakawa,et al.  An 8 Mb Multi-Layered Cross-Point ReRAM Macro With 443 MB/s Write Throughput , 2012, IEEE Journal of Solid-State Circuits.

[49]  Bae Ho Park,et al.  Time-dependent electroforming in NiO resistive switching devices , 2009 .

[50]  Shimeng Yu,et al.  Characterization of switching parameters and multilevel capability in HfOx/AlOx bi-layer RRAM devices , 2011, Proceedings of 2011 International Symposium on VLSI Technology, Systems and Applications.

[51]  M. Kozicki,et al.  Electrochemical metallization memories—fundamentals, applications, prospects , 2011, Nanotechnology.

[52]  T. Tseng,et al.  Electrical Properties and Fatigue Behaviors of ZrO2 Resistive Switching Thin Films , 2008 .

[53]  Frederick T. Chen,et al.  Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications , 2008 .

[54]  Jong Yeog Son,et al.  Direct observation of conducting filaments on resistive switching of NiO thin films , 2008 .

[55]  N. Xu,et al.  Characteristics and mechanism of conduction/set process in TiN∕ZnO∕Pt resistance switching random-access memories , 2008 .

[56]  Qi Liu,et al.  Improvement of Resistive Switching Properties in $ \hbox{ZrO}_{2}$-Based ReRAM With Implanted Ti Ions , 2009, IEEE Electron Device Letters.

[57]  Shimeng Yu,et al.  A Phenomenological Model for the Reset Mechanism of Metal Oxide RRAM , 2010, IEEE Electron Device Letters.

[58]  S.S. Wong,et al.  Elimination of Forming Process for TiOx Nonvolatile Memory Devices , 2009, IEEE Electron Device Letters.

[59]  Shimeng Yu,et al.  A Monte Carlo study of the low resistance state retention of HfOx based resistive switching memory , 2012 .

[60]  K. Y. Hsieh,et al.  High-Speed Multilevel Resistive RAM using RTO WO X , 2009 .

[61]  B. Kahng,et al.  Multilevel unipolar resistance switching in TiO2 thin films , 2009 .

[62]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[63]  D. Wolansky,et al.  Pulse-induced low-power resistive switching in HfO2 metal-insulator-metal diodes for nonvolatile memory applications , 2009 .

[64]  Sungho Kim,et al.  Resistive Switching Characteristics of Sol–Gel Zinc Oxide Films for Flexible Memory Applications , 2009, IEEE Transactions on Electron Devices.

[65]  Seong-Geon Park,et al.  Impact of Oxygen Vacancy Ordering on the Formation of a Conductive Filament in $\hbox{TiO}_{2}$ for Resistive Switching Memory , 2011, IEEE Electron Device Letters.

[66]  Shimeng Yu,et al.  Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model , 2011 .

[67]  Gregory S. Snider,et al.  Spike-timing-dependent learning in memristive nanodevices , 2008, 2008 IEEE International Symposium on Nanoscale Architectures.

[68]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[69]  Frederick T. Chen,et al.  Evidence and solution of over-RESET problem for HfOX based resistive memory with sub-ns switching speed and high endurance , 2010, 2010 International Electron Devices Meeting.

[70]  N. Xu,et al.  Resistive Switching in $\hbox{CeO}_{x}$ Films for Nonvolatile Memory Application , 2009, IEEE Electron Device Letters.

[71]  Peng Zhou,et al.  Role of TaON interface for CuxO resistive switching memory based on a combined model , 2009 .

[72]  Yoshio Nishi,et al.  Model of metallic filament formation and rupture in NiO for unipolar switching , 2010 .

[73]  N. Xu,et al.  Oxide-based RRAM switching mechanism: A new ion-transport-recombination model , 2008, 2008 IEEE International Electron Devices Meeting.

[74]  Shriram Ramanathan,et al.  Observation of electric field-assisted phase transition in thin film vanadium oxide in a metal-oxide-semiconductor device geometry , 2008 .

[75]  Jung-Hyun Lee,et al.  Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. , 2009, Nano letters.

[76]  L. Larcher,et al.  Metal oxide RRAM switching mechanism based on conductive filament microscopic properties , 2010, 2010 International Electron Devices Meeting.

[77]  N. Righos,et al.  A stackable cross point Phase Change Memory , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[78]  N. Singh,et al.  Physical mechanisms of endurance degradation in TMO-RRAM , 2011, 2011 International Electron Devices Meeting.

[79]  Tomoji Kawai,et al.  Nonvolatile bipolar resistive memory switching in single crystalline NiO heterostructured nanowires. , 2009, Journal of the American Chemical Society.

[80]  D. Ielmini,et al.  Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices , 2009, IEEE Transactions on Electron Devices.

[81]  K. Tsunoda,et al.  Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance , 2008 .

[82]  H.-S. Philip Wong,et al.  Phase Change Memory , 2010, Proceedings of the IEEE.

[83]  Doo Seok Jeong,et al.  Study of the negative resistance phenomenon in transition metal oxide films from a statistical mechanics point of view , 2006 .

[84]  Tseung-Yuen Tseng,et al.  Multilevel resistive switching in Ti/CuxO/Pt memory devices , 2010 .

[85]  Shimeng Yu,et al.  Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory , 2011 .

[86]  Zheng Wang,et al.  Field-programmable rectification in rutile TiO2 crystals , 2007 .

[87]  Z. Wei,et al.  Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism , 2008, 2008 IEEE International Electron Devices Meeting.

[88]  Frederick T. Chen,et al.  Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM , 2008, 2008 IEEE International Electron Devices Meeting.

[89]  Frederick T. Chen,et al.  Resistance Switching Characteristics of TiO2 Thin Films Prepared with Reactive Sputtering , 2009 .

[90]  Heng-Yuan Lee,et al.  Resistance switching for RRAM applications , 2011, Science China Information Sciences.

[91]  P. Zhou,et al.  Resistive Memory Switching of $\hbox{Cu}_{x}\hbox{O}$ Films for a Nonvolatile Memory Application , 2008, IEEE Electron Device Letters.

[92]  C. Hu,et al.  Effect of Top Electrode Material on Resistive Switching Properties of $\hbox{ZrO}_{2}$ Film Memory Devices , 2007, IEEE Electron Device Letters.

[93]  Frederick T. Chen,et al.  Scalability with silicon nitride encapsulation layer for Ti/HfOx pillar RRAM , 2010, Proceedings of 2010 International Symposium on VLSI Technology, System and Application.

[94]  Byung Joon Choi,et al.  Identification of a determining parameter for resistive switching of TiO2 thin films , 2005 .

[95]  I. Baek,et al.  Write Current Reduction in Transition Metal Oxide Based Resistance Change Memory , 2008 .

[96]  C. Gerber,et al.  Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals , 2001 .

[97]  O. Richard,et al.  10×10nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation , 2011, 2011 International Electron Devices Meeting.

[98]  L. Goux,et al.  On the Gradual Unipolar and Bipolar Resistive Switching of TiN\ HfO2\Pt Memory Systems , 2010 .

[99]  H. Hwang,et al.  Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device , 2011, Nanotechnology.

[100]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[101]  Yoshihiro Sugiyama,et al.  Novel Circuitry Configuration with Paired-Cell Erase Operation for High-Density 90-nm Embedded Resistive Random Access Memory , 2009 .

[102]  Shimeng Yu,et al.  AC conductance measurement and analysis of the conduction processes in HfOx based resistive switching memory , 2011 .

[103]  H. Hada,et al.  Resistance Controllability of $\hbox{Ta}_{2} \hbox{O}_{5}/\hbox{TiO}_{2}$ Stack ReRAM for Low-Voltage and Multilevel Operation , 2010, IEEE Electron Device Letters.

[104]  Serge Blonkowski,et al.  Statistics of electrical breakdown field in HfO2 and SiO2 films from millimeter to nanometer length scales , 2007 .

[105]  Hiroshi Koyama,et al.  High-Speed Resistive Switching of TiO2/TiN Nano-Crystalline Thin Film , 2006 .

[106]  S. Yasuda,et al.  Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution , 2007, cond-mat/0702564.

[107]  S. Haddad,et al.  Non-volatile resistive switching for advanced memory applications , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[108]  Masateru Taniguchi,et al.  Resistive switching multistate nonvolatile memory effects in a single cobalt oxide nanowire. , 2010, Nano letters.

[109]  Kinam Kim,et al.  Bi-layered RRAM with unlimited endurance and extremely uniform switching , 2011, 2011 Symposium on VLSI Technology - Digest of Technical Papers.

[110]  R. Waser Resistive non-volatile memory devices (Invited Paper) , 2009 .

[111]  Frederick T. Chen,et al.  Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[112]  M. Fujimoto,et al.  TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching , 2006 .

[113]  Qi Liu,et al.  Resistive switching memory effect of ZrO2 films with Zr+ implanted , 2008 .

[114]  S. Seo,et al.  Reproducible resistance switching in polycrystalline NiO films , 2004 .

[115]  Sung In Kim,et al.  Reversible resistive switching behaviors in NiO nanowires , 2008, 2010 3rd International Nanoelectronics Conference (INEC).

[116]  Heng-Yuan Lee,et al.  A 4Mb embedded SLC resistive-RAM macro with 7.2ns read-write random-access time and 160ns MLC-access capability , 2011, 2011 IEEE International Solid-State Circuits Conference.

[117]  Frederick T. Chen,et al.  Influence of Crystalline Constituent on Resistive Switching Properties of TiO2 Memory Films , 2009 .

[118]  Young-Bae Park,et al.  Interpretation of nanoscale conducting paths and their control in nickel oxide (NiO) thin films , 2008 .

[119]  H. Hwang,et al.  Resistance switching of copper doped MoOx films for nonvolatile memory applications , 2007 .

[120]  Wen-Yuan Chang,et al.  Resistive switching behaviors of ZnO nanorod layers , 2010 .

[121]  L. Goux,et al.  Evidences of oxygen-mediated resistive-switching mechanism in TiN\HfO2\Pt cells , 2010 .

[122]  Shimeng Yu,et al.  Improved Uniformity of Resistive Switching Behaviors in HfO2 Thin Films with Embedded Al Layers , 2010 .

[123]  Frederick T. Chen,et al.  Improvement of resistive switching characteristics in TiO2 thin films with embedded Pt nanocrystals , 2009 .

[124]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[125]  Young-soo Park,et al.  Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory , 2007 .

[126]  M. Yang,et al.  Bipolar resistive switching behavior in Ti/MnO2/Pt structure for nonvolatile memory devices , 2009 .

[127]  M. Kozicki,et al.  Erratum: Electrochemical metallization memories - Fundamentals, applications, prospects (Nanotechnology (2011) 22 (254003)) , 2011 .

[128]  Jin Pyo Hong,et al.  Hysteretic bipolar resistive switching characteristics in TiO2/TiO2−x multilayer homojunctions , 2009 .

[129]  Wei Lu,et al.  Short-term Memory to Long-term Memory Transition in a Nanoscale Memristor , 2022 .

[130]  Shimeng Yu,et al.  An Electronic Synapse Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic Computation , 2011, IEEE Transactions on Electron Devices.

[131]  Tuo-Hung Hou,et al.  One selector-one resistor (1S1R) crossbar array for high-density flexible memory applications , 2011, 2011 International Electron Devices Meeting.

[132]  C. Yoshida,et al.  High speed resistive switching in Pt∕TiO2∕TiN film for nonvolatile memory application , 2007 .

[133]  Shimeng Yu,et al.  Characterization of low-frequency noise in the resistive switching of transition metal oxide HfO 2 , 2012 .

[134]  D. Ielmini,et al.  Sub-10 µA reset in NiO-based resistive switching memory (RRAM) cells , 2010, 2010 IEEE International Memory Workshop.

[135]  T. W. Hickmott LOW-FREQUENCY NEGATIVE RESISTANCE IN THIN ANODIC OXIDE FILMS , 1962 .

[136]  I. Baek,et al.  Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[137]  Sung-il Cho,et al.  Current-induced metal insulator transition in VOx thin film prepared by rapid-thermal-annealing , 2006 .

[138]  Kentaro Kinoshita,et al.  Direct observation of oxygen movement during resistance switching in NiO/Pt film , 2008 .

[139]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[140]  C. Hu,et al.  Bistable Resistive Switching in Al2O3 Memory Thin Films , 2007 .

[141]  D. Morgan,et al.  Electrical phenomena in amorphous oxide films , 1970 .

[142]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[143]  N. Xu,et al.  A unified physical model of switching behavior in oxide-based RRAM , 2008, 2008 Symposium on VLSI Technology.

[144]  S. O. Park,et al.  Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[145]  Weidong Yu,et al.  Forming-free colossal resistive switching effect in rare-earth-oxide Gd2O3 films for memristor applications , 2009 .

[146]  Byung Joon Choi,et al.  Resistive Switching in Pt ∕ Al2O3 ∕ TiO2 ∕ Ru Stacked Structures , 2006 .

[147]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[148]  D. Ielmini,et al.  Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM , 2007, 2007 IEEE International Electron Devices Meeting.

[149]  B. Delley,et al.  Role of Oxygen Vacancies in Cr‐Doped SrTiO3 for Resistance‐Change Memory , 2007, 0707.0563.

[150]  K. Tsunoda,et al.  Low Power and High Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3 V , 2007, 2007 IEEE International Electron Devices Meeting.

[151]  Byoungil Lee,et al.  NiO resistance change memory with a novel structure for 3D integration and improved confinement of conduction path , 2006, 2009 Symposium on VLSI Technology.