Vortices and Polynomials

The relationship between point vortex dynamics and the properties of polynomials with roots at the vortex positions is discussed. Classical polynomials, such as the Hermite polynomials, have roots that describe the equilibria of identical vortices on the line. Stationary and uniformly translating vortex configurations with vortices of the same strength but positive or negative orientation are given by the zeros of the Adler–Moser polynomials, which arise in the description of rational solutions of the Korteweg–de Vries equation. For quadrupole background flow, vortex configurations are given by the zeros of polynomials expressed as Wronskians of Hermite polynomials. Further, new solutions are found in this case using the special polynomials arising in the description of rational solutions of the fourth Painlevé equation.

[1]  Peter A. Clarkson,et al.  Rational Solutions Of The Boussinesq Equation , 2008 .

[2]  P. Clarkson,et al.  The Symmetric Fourth Painlevé Hierarchy and Associated Special Polynomials , 2008 .

[3]  K. O'Neil Relative equilibrium and collapse configurations of heterogeneous vortex triple rings , 2007 .

[4]  K. O'Neil Continuous parametric families of stationary and translating periodic point vortex configurations , 2007, Journal of Fluid Mechanics.

[5]  Hassan Aref,et al.  Point vortex dynamics: A classical mathematics playground , 2007 .

[6]  H. Aref Vortices and polynomials , 2007 .

[7]  P. Clarkson Special Polynomials Associated with Rational Solutions of the Painlevé Equations and Applications to Soliton Equations , 2006 .

[8]  Athanassios S. Fokas,et al.  Painleve Transcendents: The Riemann-hilbert Approach , 2006 .

[9]  K. O'Neil Minimal polynomial systems for point vortex equilibria , 2006 .

[10]  Yang Chen,et al.  Painlevé IV and degenerate Gaussian unitary ensembles , 2006, math-ph/0606064.

[11]  P. Clarkson Special polynomials associated with rational solutions of the defocusing nonlinear Schrödinger equation and the fourth Painlevé equation , 2006, European Journal of Applied Mathematics.

[12]  I. V. Barashenkov,et al.  Complex Sine-Gordon-2: A New Algorithm for Multivortex Solutions on the Plane , 2005, nlin/0502048.

[13]  P. Clarkson The fourth Painlevé equation and associated special polynomials , 2003 .

[14]  P. Clarkson,et al.  The second Painlevé equation, its hierarchy and associated special polynomials , 2003 .

[15]  Peter A. Clarkson,et al.  Painlevé equations: nonlinear special functions , 2003 .

[16]  I. Loutsenko Integrable Dynamics of Charges Related to the Bilinear Hypergeometric Equation , 2002, math-ph/0210018.

[17]  E. Kanzieper Replica field theories, painlevé transcendents, and exact correlation functions. , 2002, Physical review letters.

[18]  Li Yezhou,et al.  Rational Solutions of Painlevé Equations , 2002, Canadian Journal of Mathematics.

[19]  Li Yezhou,et al.  Rational Solutions of Painlev´ e Equations , 2002 .

[20]  Ilpo Laine,et al.  Painlev'e di erential equations in the complex plane , 2002 .

[21]  P. Forrester,et al.  Application of the τ-Function Theory¶of Painlevé Equations to Random Matrices:¶PIV, PII and the GUE , 2001, math-ph/0103025.

[22]  J. Borwein,et al.  Affine Weyl groups , 2001 .

[23]  A. Veselov,et al.  On Stieltjes relations, Painlevé-IV hierarchy and complex monodromy , 2000, math-ph/0012040.

[24]  É. Brézin,et al.  Characteristic Polynomials of Random Matrices , 1999, math-ph/9910005.

[25]  Alexei Oblomkov,et al.  Monodromy-free Schrödinger operators with quadratically increasing potentials , 1999 .

[26]  K. Kajiwara,et al.  A generalization of determinant formulae for the solutions of Painlevé II and XXXIV equations , 1999, solv-int/9903014.

[27]  M. Noumi,et al.  Symmetries in the fourth Painlevé equation and Okamoto polynomials , 1997, Nagoya Mathematical Journal.

[28]  M. Noumi,et al.  Higher order Painlevé equations of type $A^{(1)}_l$ , 1998, math/9808003.

[29]  I. V. Barashenkov,et al.  EXACT VORTEX SOLUTIONS OF THE COMPLEX SINE-GORDON THEORY ON THE PLANE , 1998, hep-th/9807045.

[30]  M. Noumi,et al.  Affine Weyl Groups, Discrete Dynamical Systems and Painlevé Equations , 1998, math/9804132.

[31]  M. Noumi,et al.  Higher Order Painlevé Equations of Type A , 1998 .

[32]  T. Ratiu,et al.  Rotatingn-gon/kn-gon vortex configurations , 1996 .

[33]  Y. Ohta,et al.  Determinant structure of the rational solutions for the Painlevé II equation , 1996, solv-int/9709011.

[34]  V. E. Adler A modification of Crum's method , 1994 .

[35]  V. E. Adler,et al.  Nonlinear chains and Painleve´ equations , 1994 .

[36]  E. Yankovsky,et al.  Equidistant spectra of anharmonic oscillators. , 1994, Chaos.

[37]  A. Veselov,et al.  Dressing chains and the spectral theory of the Schrödinger operator , 1993 .

[38]  Campbell,et al.  Method for finding stationary states of point vortices. , 1987, Physical review. A, General physics.

[39]  Kazuo Okamoto Studies on the Painleve equations II , 1987 .

[40]  Kazuo Okamoto Studies on the Painlevé equations , 1986 .

[41]  Kazuo Okamoto,et al.  Studies on the Painlev equations: III. Second and fourth painlev equations,P II andP IV , 1986 .

[42]  F. Grünbaum,et al.  Differential equations in the spectral parameter , 1986 .

[43]  R. Hirota,et al.  A New Example of Explode-Decay Solitary Waves in One-Dimension , 1985 .

[44]  A. Bartman A New Interpretation of the Adler-Moser KdV Polynomials: Interaction of Vortices , 1984 .

[45]  A. Newell,et al.  Monodromy- and spectrum-preserving deformations I , 1980 .

[46]  H. Airault,et al.  Rational solutions of Painleve equations , 1979 .

[47]  J. Satsuma Solitons and Rational Solutions of Nonlinear Evolution Equations (Theory of Nonlinear Waves) , 1978 .

[48]  Jürgen Moser,et al.  On a class of polynomials connected with the Korteweg-deVries equation , 1978 .

[49]  Mark J. Ablowitz,et al.  Exact Linearization of a Painlevé Transcendent , 1977 .

[50]  H. McKean,et al.  Rational and elliptic solutions of the korteweg‐de vries equation and a related many‐body problem , 1977 .

[51]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[52]  M. Crum ASSOCIATED STURM-LIOUVILLE SYSTEMS , 1999, physics/9908019.

[53]  J. L. Burchnall,et al.  A Set of Differential Equations which can be Solved by Polynomials , 1930 .