A Comparison of Selected Modifications of the Particle Swarm Optimization Algorithm

We compare 27 modifications of the original particle swarm optimization (PSO) algorithm. The analysis evaluated nine basic PSO types, which differ according to the swarm evolution as controlled by various inertia weights and constriction factor. Each of the basic PSO modifications was analyzed using three different distributed strategies. In the first strategy, the entire swarm population is considered as one unit (OC-PSO), the second strategy periodically partitions the population into equally large complexes according to the particle’s functional value (SCE-PSO), and the final strategy periodically splits the swarm population into complexes using random permutation (SCERand-PSO). All variants are tested using 11 benchmark functions that were prepared for the special session on real-parameter optimization of CEC 2005. It was found that the best modification of the PSO algorithm is a variant with adaptive inertia weight. The best distribution strategy is SCE-PSO, which gives better results than do OC-PSO and SCERand-PSO for seven functions. The sphere function showed no significant difference between SCE-PSO and SCERand-PSO. It follows that a shuffling mechanism improves the optimization process.

[1]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[2]  Ajith Abraham,et al.  Particle Swarm Optimization: Performance Tuning and Empirical Analysis , 2009, Foundations of Computational Intelligence.

[3]  F. V. D. Bergh An Analysis of Particle Swarm Optimizers(PSO) , 2013 .

[4]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[5]  Ville Tirronen,et al.  Shuffle or update parallel differential evolution for large-scale optimization , 2011, Soft Comput..

[6]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[7]  Mohammad Mehdi Ebadzadeh,et al.  A novel particle swarm optimization algorithm with adaptive inertia weight , 2011, Appl. Soft Comput..

[8]  Cheng-Hong Yang,et al.  Linearly Decreasing Weight Particle Swarm Optimization with Accelerated Strategy for Data Clustering , 2022 .

[9]  Hussein A. Abbass,et al.  A Modified Strategy for the Constriction Factor in Particle Swarm Optimization , 2007, ACAL.

[10]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[11]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[12]  Guimin Chen,et al.  A Particle Swarm Optimizer with Multi-stage Linearly-Decreasing Inertia Weight , 2009, 2009 International Joint Conference on Computational Sciences and Optimization.

[13]  Russell C. Eberhart,et al.  Tracking and optimizing dynamic systems with particle swarms , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[14]  P. J. Angeline,et al.  Using selection to improve particle swarm optimization , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[15]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[16]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[17]  Thomas Stützle,et al.  Hybrid Particle Swarm Optimization: An Examination of the Influence of Iterative Improvement Algorithms on Performance , 2006, ANTS Workshop.

[18]  Carlos A. Coello Coello,et al.  Handling Constraints in Particle Swarm Optimization Using a Small Population Size , 2007, MICAI.

[19]  Vassilis P. Plagianakos,et al.  Improving the Particle Swarm Optimizer by Function “Stretching” , 2001 .

[20]  Konstantinos E. Parsopoulos,et al.  Initializing the Particle Swarm Optimizer Using the Nonlinear Simplex Method , 2002 .

[21]  Russell C. Eberhart,et al.  Computational intelligence - concepts to implementations , 2007 .

[22]  Neil Gershenfeld,et al.  The nature of mathematical modeling , 1998 .

[23]  Ajith Abraham,et al.  Inertia Weight strategies in Particle Swarm Optimization , 2011, 2011 Third World Congress on Nature and Biologically Inspired Computing.

[24]  Leandro dos Santos Coelho,et al.  A hybrid shuffled complex evolution approach based on differential evolution for unconstrained optimization , 2011, Appl. Math. Comput..

[25]  Yong Feng,et al.  Chaotic Inertia Weight in Particle Swarm Optimization , 2007, Second International Conference on Innovative Computing, Informatio and Control (ICICIC 2007).

[26]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[27]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[28]  Bruce A. Robinson,et al.  Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces , 2009, IEEE Transactions on Evolutionary Computation.

[29]  Leandro dos Santos Coelho,et al.  Opposition-based shuffled PSO with passive congregation applied to FM matching synthesis , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[30]  Nikolaus Hansen,et al.  Compilation of Results on the 2005 CEC Benchmark Function Set , 2005 .

[31]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[32]  Darrell G. Fontane,et al.  Use of Multiobjective Particle Swarm Optimization in Water Resources Management , 2008 .

[33]  Tiesong Hu,et al.  A Shuffled Complex Evolution of Particle Swarm Optimization Algorithm , 2007, ICANNGA.

[34]  Michael N. Vrahatis,et al.  On the computation of all global minimizers through particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[35]  Bing He,et al.  A novel two-stage hybrid swarm intelligence optimization algorithm and application , 2012, Soft Computing.

[36]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[37]  R. W. Dobbins,et al.  Computational intelligence PC tools , 1996 .

[38]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[39]  Luis A. Bastidas,et al.  Multiobjective particle swarm optimization for parameter estimation in hydrology , 2006 .

[40]  O. Weck,et al.  A COMPARISON OF PARTICLE SWARM OPTIMIZATION AND THE GENETIC ALGORITHM , 2005 .