Static Isolated Horizons: SU(2) Invariant Phase Space, Quantization, and Black Hole Entropy

We study the classical field theoretical formulation of static generic isolated horizons in a manifestly SU(2) invariant formulation. We show that the usual classical description requires revision in the non-static case due to the breaking of diffeomorphism invariance at the horizon leading to the non-conservation of the usual pre-symplectic structure. We argue how this difficulty could be avoided by a simple enlargement of the field content at the horizon that restores diffeomorphism invariance. Restricting our attention to static isolated horizons we study the effective theories describing the boundary degrees of freedom. A quantization of the horizon degrees of freedom is proposed. By defining a statistical mechanical ensemble where only the area aH of the horizon is fixed macroscopically—states with fluctuations away from spherical symmetry are allowed—we show that it is possible to obtain agreement with the Hawkings area law (S = aH /(4l 2p)) without fixing the Immirzi parameter to any particular value: consistency with the area law only imposes a relationship between the Immirzi parameter and the level of the Chern-Simons theory involved in the effective description of the horizon degrees of freedom.

[1]  C. Beetle,et al.  Generic isolated horizons in loop quantum gravity , 2010, 1007.2768.

[2]  Abraham Loeb,et al.  THE EVENT HORIZON OF SAGITTARIUS A* , 2009, 0903.1105.

[3]  Quantum spin dynamics: VIII. The master constraint , 2005, gr-qc/0510011.

[4]  A. Ashtekar,et al.  Background independent quantum gravity: a status report , 2004 .

[6]  Danilo Jimenez Rezende,et al.  Four-dimensional Lorentzian Holst action with topological terms , 2009, 0902.3416.

[7]  Quantum black holes: Entropy and entanglement on the horizon , 2005, gr-qc/0508085.

[8]  D. Pranzetti,et al.  Black hole entropy from the SU(2)-invariant formulation of type I isolated horizons , 2010, 1006.0634.

[9]  Alejandro Perez Introduction to loop quantum gravity and spin foams , 2004, gr-qc/0409061.

[10]  Mechanics of rotating isolated horizons , 2001, gr-qc/0103026.

[11]  D. Pranzetti,et al.  The SU(2) black hole entropy revisited , 2011, 1103.2723.

[12]  R. Kaul,et al.  Entropy of Isolated Horizons revisited , 2009, 0907.0846.

[13]  A. Ashtekar,et al.  Isolated horizons: The classical phase space , 1999, Advances in Theoretical and Mathematical Physics.

[14]  T. Thiemann The Phoenix Project: master constraint programme for loop quantum gravity , 2003, gr-qc/0305080.

[15]  A. Ashtekar,et al.  Geometry of Generic Isolated Horizons , 2001, gr-qc/0111067.

[16]  C. Rovelli,et al.  Generalized Spinfoams , 2010, 1011.2149.

[17]  E. Witten,et al.  Covariant description of canonical formalism in geometrical theories , 1986 .

[18]  R. Wald,et al.  Local symmetries and constraints , 1990 .

[19]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[20]  Jonathan Engle,et al.  LQG vertex with finite Immirzi parameter , 2007, 0711.0146.

[21]  R. Penrose,et al.  A space‐time calculus based on pairs of null directions , 1973 .

[22]  E. Wilson-Ewing,et al.  Surface terms, asymptotics and thermodynamics of the Holst action , 2010, 1005.3298.

[23]  G. J.FernandoBarbero,et al.  Combinatorics of the SU(2) black hole entropy in loop quantum gravity , 2009, 0906.4529.

[24]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[25]  Eduardo J S Villaseñor,et al.  Detailed black hole state counting in loop quantum gravity , 2010, 1101.3660.

[26]  K. Krasnov,et al.  A new spin foam model for 4D gravity , 2007, 0708.1595.

[27]  A. Ashtekar Lectures on Non-Perturbative Canonical Gravity , 1991 .

[28]  Algebraic approach to quantum black holes: Logarithmic corrections to black hole entropy , 2002, gr-qc/0210024.

[29]  Uniqueness of Diffeomorphism Invariant States on Holonomy–Flux Algebras , 2005, gr-qc/0504147.

[30]  Ruth M. Williams,et al.  The Turaev-Viro state sum model and three-dimensional quantum gravity , 1991 .

[31]  E. Álvarez,et al.  Quantum Gravity , 2004, gr-qc/0405107.

[32]  Generating functions for black hole entropy in loop quantum gravity , 2008, 0804.4784.

[33]  Quantum geometry of isolated horizons and black hole entropy , 2000, gr-qc/0005126.

[34]  Black hole entropy in loop quantum gravity , 2004, gr-qc/0407052.

[35]  G. J.FernandoBarbero,et al.  On the computation of black hole entropy in loop quantum gravity , 2008, Classical and Quantum Gravity.

[36]  S. Carlip Black Hole Thermodynamics and Statistical Mechanics , 2008, 0807.4520.

[37]  Jonathan Engle,et al.  Black hole entropy and SU(2) Chern-Simons theory. , 2009, Physical review letters.

[38]  J. Bekenstein Black Holes and Entropy , 1973, Jacob Bekenstein.

[39]  A. Mueller Experimental evidence of black holes , 2007, astro-ph/0701228.

[40]  Eduardo J S Villaseñor,et al.  Black hole state counting in loop quantum gravity: a number-theoretical approach. , 2008, Physical review letters.

[41]  M. Reid Is there a Supermassive Black Hole at the Center of the Milky Way , 2008, 0808.2624.

[42]  Majumdar,et al.  Logarithmic correction to the bekenstein-hawking entropy , 2000, Physical review letters.

[43]  Lewandowski,et al.  Generic isolated horizons and their applications , 2000, Physical review letters.

[44]  C. S.,et al.  Logarithmic Corrections to Black Hole Entropy from the Cardy Formula , 2000 .

[45]  Christian Fleischhack Communications in Mathematical Physics Representations of the Weyl Algebra in Quantum Geometry , 2008 .

[46]  Entropy from Conformal Field Theory at Killing Horizons , 1999 .

[47]  S. Major Shape in an atom of space: exploring quantum geometry phenomenology , 2010, 1005.5460.

[48]  Amit Ghosh,et al.  Log correction to the black hole area law , 2004, gr-qc/0401070.

[49]  S. Hawking Particle creation by black holes , 1975 .

[50]  Isolated horizons: Hamiltonian evolution and the first law , 2000, gr-qc/0005083.