Resolving the prefrontal mechanisms of adaptive cognitive behaviors: A cross-species perspective

[1]  G. Kalweit,et al.  Mechanisms of Premotor-Motor Cortex Interactions during Goal Directed Behavior , 2023, bioRxiv.

[2]  Jonas M. Mikhaeil,et al.  Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems , 2022, ICML.

[3]  S. Grün,et al.  Comparing Surrogates to Evaluate Precisely Timed Higher-Order Spike Correlations , 2022, eNeuro.

[4]  J. Wallis,et al.  Taking stock of value in the orbitofrontal cortex , 2022, Nature Reviews Neuroscience.

[5]  Brad E. Pfeiffer,et al.  Hippocampal replays appear after a single experience and incorporate greater detail with more experience , 2022, Neuron.

[6]  H. Yao,et al.  Single-neuron projectome of mouse prefrontal cortex , 2022, Nature Neuroscience.

[7]  David J. Foster,et al.  Flexible rerouting of hippocampal replay sequences around changing barriers in the absence of global place field remapping , 2022, Neuron.

[8]  Sydney S. Cash,et al.  Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex , 2022, Nature Neuroscience.

[9]  I. Fried,et al.  Ethical commitments, principles, and practices guiding intracranial neuroscientific research in humans , 2022, Neuron.

[10]  Matthew K. Leonard,et al.  High-density single-unit human cortical recordings using the Neuropixels probe , 2021, Neuron.

[11]  C. Leibold,et al.  Directional Tuning of Phase Precession Properties in the Hippocampus , 2021, The Journal of Neuroscience.

[12]  M. Zugaro,et al.  Distributed cell assemblies spanning prefrontal cortex and striatum , 2021, Current Biology.

[13]  M. Bartos,et al.  Topographically organized representation of space and context in the medial prefrontal cortex , 2021, Proceedings of the National Academy of Sciences.

[14]  Erin L. Rich,et al.  Cognitive strategies shift information from single neurons to populations in prefrontal cortex , 2021, Neuron.

[15]  V. Sohal,et al.  Top-down control of hippocampal signal-to-noise by prefrontal long-range inhibition , 2021, Cell.

[16]  M. Nitsche,et al.  Phase synchronized 6 Hz transcranial electric and magnetic stimulation boosts frontal theta activity and enhances working memory , 2021, NeuroImage.

[17]  Michael M. Halassa,et al.  Thalamic circuits for independent control of prefrontal signal and noise , 2021, Nature.

[18]  R. LaLumiere,et al.  Infralimbic cortex functioning across motivated behaviors: Can the differences be reconciled? , 2021, Neuroscience & Biobehavioral Reviews.

[19]  G. Dragoi,et al.  Orientation selectivity enhances context generalization and generative predictive coding in the hippocampus , 2021, Neuron.

[20]  H. Adesnik,et al.  Probing neural codes with two-photon holographic optogenetics , 2021, Nature Neuroscience.

[21]  S. Wise,et al.  Evolution of prefrontal cortex , 2021, Neuropsychopharmacology.

[22]  Pablo E. Jercog,et al.  Dynamical prefrontal population coding during defensive behaviours , 2021, Nature.

[23]  R. Adolphs,et al.  The geometry of domain-general performance monitoring in the human medial frontal cortex , 2021, bioRxiv.

[24]  Nicolas Brunel,et al.  From synapse to network: models of information storage and retrieval in neural circuits , 2021, Current Opinion in Neurobiology.

[25]  I. Diester,et al.  Spontaneous activity competes with externally evoked responses in sensory cortex , 2021, Proceedings of the National Academy of Sciences.

[26]  David J. Foster,et al.  Prefrontal Cortical Neurons Are Selective for Non-Local Hippocampal Representations during Replay and Behavior , 2021, The Journal of Neuroscience.

[27]  P. Fries,et al.  Cortical gamma-band resonance preferentially transmits coherent input , 2021, Cell reports.

[28]  M. Carlén,et al.  The mouse prefrontal cortex: Unity in diversity , 2021, Neuron.

[29]  H. Mansvelder,et al.  Bi-directional regulation of cognitive control by distinct prefrontal cortical output neurons to thalamus and striatum , 2021, Nature Communications.

[30]  I. Hanganu-Opatz,et al.  A transient developmental increase in prefrontal activity alters network maturation and causes cognitive dysfunction in adult mice , 2021, Neuron.

[31]  M. Shapiro,et al.  Post-error recruitment of frontal sensory cortical projections promotes attention in mice , 2021, Neuron.

[32]  J. Gordon,et al.  Reset of hippocampal-prefrontal circuitry facilitates learning , 2021, Nature.

[33]  Ziv M. Williams,et al.  Single-neuronal predictions of others’ beliefs in humans , 2020, Nature.

[34]  Bryan C. Souza,et al.  Learning differentially shapes prefrontal and hippocampal activity during classical conditioning , 2020, bioRxiv.

[35]  Justus M. Kebschull,et al.  Differential encoding in prefrontal cortex projection neuron classes across cognitive tasks , 2020, Cell.

[36]  D. Durstewitz,et al.  Coordinated Prefrontal State Transition Leads Extinction of Reward-Seeking Behaviors , 2020, The Journal of Neuroscience.

[37]  David P. Collins,et al.  Mediodorsal and Ventromedial Thalamus Engage Distinct L1 Circuits in the Prefrontal Cortex , 2020, Neuron.

[38]  Spellman Timothy,et al.  Prefrontal deep projection neurons enable cognitive flexibility via persistent feedback monitoring , 2019, Cell.

[39]  Daniel Durstewitz,et al.  Identifying nonlinear dynamical systems with multiple time scales and long-range dependencies , 2021, ICLR.

[40]  M. Platt,et al.  Neuronal Correlates of Strategic Cooperation in Monkeys , 2020, Nature neuroscience.

[41]  Ilka Diester,et al.  Functional interrogation of neural circuits with virally transmitted optogenetic tools , 2020, Journal of Neuroscience Methods.

[42]  Maxim Raginsky,et al.  Universal Simulation of Stable Dynamical Systems by Recurrent Neural Nets , 2020, L4DC.

[43]  Ueli Rutishauser,et al.  Flexible recruitment of memory-based choice representations by the human medial frontal cortex , 2020, Science.

[44]  G. Quirk,et al.  Divergent projections of the prelimbic cortex bidirectionally regulate active avoidance , 2020, bioRxiv.

[45]  T. Fukai,et al.  Concomitant Processing of Choice and Outcome in Frontal Corticostriatal Ensembles Correlates with Performance of Rats , 2020, bioRxiv.

[46]  I. Hanganu-Opatz,et al.  Knock-Down of Hippocampal DISC1 in Immune-Challenged Mice Impairs the Prefrontal–Hippocampal Coupling and the Cognitive Performance Throughout Development , 2020, bioRxiv.

[47]  Rafael Yuste,et al.  Playing the piano with the cortex: role of neuronal ensembles and pattern completion in perception and behavior , 2020, Current Opinion in Neurobiology.

[48]  Jason M. Scimeca,et al.  Causal Evidence for a Role of Theta and Alpha Oscillations in the Control of Working Memory , 2020, Current Biology.

[49]  Katherine E. Conen,et al.  Values Encoded in Orbitofrontal Cortex Are Causal to Economic Choices , 2020, Nature.

[50]  Jozsef Csicsvari,et al.  Replay of Behavioral Sequences in the Medial Prefrontal Cortex during Rule Switching , 2020, Neuron.

[51]  Yang Dan,et al.  Prefrontal Corticotectal Neurons Enhance Visual Processing through the Superior Colliculus and Pulvinar Thalamus , 2019, Neuron.

[52]  Matthew P. H. Gardner,et al.  Real-Time Value Integration during Economic Choice Is Regulated by Orbitofrontal Cortex , 2019, Current Biology.

[53]  Junya Hirokawa,et al.  Frontal cortex neuron types categorically encode single decision variables , 2019, Nature.

[54]  R. Mooney,et al.  The neurobiology of innate, volitional and learned vocalizations in mammals and birds , 2019, Philosophical Transactions of the Royal Society B.

[55]  Yun Wang,et al.  Hierarchical organization of cortical and thalamic connectivity , 2019, Nature.

[56]  A. L. Biel,et al.  Dynamic regulation of interregional cortical communication by slow brain oscillations during working memory , 2019, Nature Communications.

[57]  Magdalene I. Schlesiger,et al.  Hippocampal CA1 replay becomes less prominent but more rigid without inputs from medial entorhinal cortex , 2019, Nature Communications.

[58]  Shaun R. Patel,et al.  Dorsolateral prefrontal neurons mediate subjective decisions and their variation in humans , 2019, Nature Neuroscience.

[59]  Torben Ott,et al.  Dopamine and Cognitive Control in Prefrontal Cortex , 2019, Trends in Cognitive Sciences.

[60]  R. Reinhart,et al.  Working memory revived in older adults by synchronizing rhythmic brain circuits , 2019, Nature Neuroscience.

[61]  Daniel Durstewitz,et al.  Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI , 2019, PLoS Comput. Biol..

[62]  M. Carlén,et al.  A whole-brain atlas of monosynaptic input targeting four different cell types in the medial prefrontal cortex of the mouse , 2019, Nature Neuroscience.

[63]  Shantanu P. Jadhav,et al.  Coherent Coding of Spatial Position Mediated by Theta Oscillations in the Hippocampus and Prefrontal Cortex , 2019, The Journal of Neuroscience.

[64]  Madhura R. Joglekar,et al.  Task representations in neural networks trained to perform many cognitive tasks , 2019, Nature Neuroscience.

[65]  I. Fried,et al.  A Tradeoff in the Neural Code across Regions and Species , 2019, Cell.

[66]  Maanasa Jayachandran,et al.  Prefrontal Pathways Provide Top-Down Control of Memory for Sequences of Events , 2018, bioRxiv.

[67]  Florian Mormann,et al.  Single Neurons in the Human Brain Encode Numbers , 2018, Neuron.

[68]  M. Laubach,et al.  What, If Anything, Is Rodent Prefrontal Cortex? , 2018, eNeuro.

[69]  Andreas Nieder,et al.  Structuring of Abstract Working Memory Content by Fronto-parietal Synchrony in Primate Cortex , 2018, Neuron.

[70]  E. Kandel,et al.  Impaired recruitment of dopamine neurons during working memory in mice with striatal D2 receptor overexpression , 2018, Nature Communications.

[71]  Adam G. Carter,et al.  Ventral Hippocampal Inputs Preferentially Drive Corticocortical Neurons in the Infralimbic Prefrontal Cortex , 2018, The Journal of Neuroscience.

[72]  N. Heintz,et al.  Cell-Type-Specific Contributions of Medial Prefrontal Neurons to Flexible Behaviors , 2018, The Journal of Neuroscience.

[73]  Chad J. Donahue,et al.  Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates , 2018, Proceedings of the National Academy of Sciences.

[74]  Bijan Pesaran,et al.  Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation , 2018, Nature Neuroscience.

[75]  Paul G Anastasiades,et al.  Reciprocal Circuits Linking the Prefrontal Cortex with Dorsal and Ventral Thalamic Nuclei , 2018, Neuron.

[76]  Vikaas S Sohal,et al.  Roles of Prefrontal Cortex and Mediodorsal Thalamus in Task Engagement and Behavioral Flexibility , 2018, The Journal of Neuroscience.

[77]  E. Coutureau,et al.  Thalamocortical and corticothalamic pathways differentially contribute to goal-directed behaviors in the rat , 2018, eLife.

[78]  P. Fitzgerald,et al.  Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear , 2018, Nature Neuroscience.

[79]  Shantanu P. Jadhav,et al.  Hippocampal-Prefrontal Reactivation during Learning Is Stronger in Awake Compared with Sleep States , 2017, The Journal of Neuroscience.

[80]  I. Hanganu-Opatz,et al.  Glutamatergic drive along the septo-temporal axis of hippocampus boosts prelimbic oscillations in the neonatal mouse , 2017, bioRxiv.

[81]  Eghbal A. Hosseini,et al.  Flexible timing by temporal scaling of cortical responses , 2017, Nature Neuroscience.

[82]  Sergey L. Gratiy,et al.  Fully integrated silicon probes for high-density recording of neural activity , 2017, Nature.

[83]  Marie Carlén,et al.  What constitutes the prefrontal cortex? , 2017, Science.

[84]  Karl Deisseroth,et al.  Molecular and Circuit-Dynamical Identification of Top-Down Neural Mechanisms for Restraint of Reward Seeking , 2017, Cell.

[85]  Lu Zhang,et al.  History of winning remodels thalamo-PFC circuit to reinforce social dominance , 2017, Science.

[86]  H. Eichenbaum Prefrontal–hippocampal interactions in episodic memory , 2017, Nature Reviews Neuroscience.

[87]  Jonathan W. Pillow,et al.  Combined Social and Spatial Coding in a Descending Projection from the Prefrontal Cortex , 2017, Cell.

[88]  Chethan Pandarinath,et al.  Inferring single-trial neural population dynamics using sequential auto-encoders , 2017, Nature Methods.

[89]  Robert T. Knight,et al.  Bidirectional Frontoparietal Oscillatory Systems Support Working Memory , 2017, Current Biology.

[90]  J. Gordon,et al.  Thalamic projections sustain prefrontal activity during working memory maintenance , 2017, Nature Neuroscience.

[91]  Takashi Kitamura,et al.  Engrams and circuits crucial for systems consolidation of a memory , 2017, Science.

[92]  Ralf D. Wimmer,et al.  Thalamic amplification of cortical connectivity sustains attentional control , 2017, Nature.

[93]  Adam J. Sachs,et al.  Correlated variability modifies working memory fidelity in primate prefrontal neuronal ensembles , 2017, Proceedings of the National Academy of Sciences.

[94]  Wulfram Gerstner,et al.  Integrating Hebbian and homeostatic plasticity: the current state of the field and future research directions , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[95]  K. Deisseroth,et al.  Gamma oscillations organize top-down signalling to hypothalamus and enable food seeking , 2017, Nature.

[96]  A. Mamelak,et al.  Persistently active neurons in human medial frontal and medial temporal lobe support working memory , 2017, Nature Neuroscience.

[97]  James M. Otis,et al.  Prefrontal cortex output circuits guide reward seeking through divergent cue encoding , 2017, Nature.

[98]  Daniel Durstewitz,et al.  Cell assemblies at multiple time scales with arbitrary lag constellations , 2017, eLife.

[99]  T. Branco,et al.  Prefrontal cortical control of a brainstem social behavior circuit , 2016, Nature Neuroscience.

[100]  Michael Lagler,et al.  Divisions of Identified Parvalbumin-Expressing Basket Cells during Working Memory-Guided Decision Making , 2016, Neuron.

[101]  Nicolas W. Schuck,et al.  Human Orbitofrontal Cortex Represents a Cognitive Map of State Space , 2016, Neuron.

[102]  Pascal Fries,et al.  Gamma-Rhythmic Gain Modulation , 2016, Neuron.

[103]  E. Miller,et al.  Gamma and Beta Bursts Underlie Working Memory , 2016, Neuron.

[104]  Christopher D. Harvey,et al.  Recurrent Network Models of Sequence Generation and Memory , 2016, Neuron.

[105]  Robert Gütig,et al.  Spiking neurons can discover predictive features by aggregate-label learning , 2016, Science.

[106]  N. P. Bichot,et al.  A Source for Feature-Based Attention in the Prefrontal Cortex , 2015, Neuron.

[107]  Talia N. Lerner,et al.  Basomedial amygdala mediates top–down control of anxiety and fear , 2015, Nature.

[108]  P. Fries Rhythms for Cognition: Communication through Coherence , 2015, Neuron.

[109]  Conor Liston,et al.  Projections from neocortex mediate top-down control of memory retrieval , 2015, Nature.

[110]  H. Barbas General cortical and special prefrontal connections: principles from structure to function. , 2015, Annual review of neuroscience.

[111]  Zhigang Suo,et al.  Syringe-injectable electronics. , 2015, Nature nanotechnology.

[112]  M. Moser,et al.  A prefrontal–thalamo–hippocampal circuit for goal-directed spatial navigation , 2015, Nature.

[113]  Jason Tucciarone,et al.  The Mediodorsal Thalamus Drives Feedforward Inhibition in the Anterior Cingulate Cortex via Parvalbumin Interneurons , 2015, The Journal of Neuroscience.

[114]  Leigh R. Hochberg,et al.  The Emergence of Single Neurons in Clinical Neurology , 2015, Neuron.

[115]  Stefano Fusi,et al.  Hippocampal-prefrontal input supports spatial encoding in working memory , 2015, Nature.

[116]  David J. Foster,et al.  Dissociation between the Experience-Dependent Development of Hippocampal Theta Sequences and Single-Trial Phase Precession , 2015, The Journal of Neuroscience.

[117]  E. Miller,et al.  Goal-direction and top-down control , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[118]  A Zwanenburg,et al.  Functional connectivity in preterm infants derived from EEG coherence analysis. , 2014, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[119]  K. Branson,et al.  Behavioral Variability through Stochastic Choice and Its Gating by Anterior Cingulate Cortex , 2014, Cell.

[120]  Chris J. Tinsley,et al.  The topology of connections between rat prefrontal, motor and sensory cortices , 2014, Front. Syst. Neurosci..

[121]  Vikaas S Sohal,et al.  A Class of GABAergic Neurons in the Prefrontal Cortex Sends Long-Range Projections to the Nucleus Accumbens and Elicits Acute Avoidance Behavior , 2014, The Journal of Neuroscience.

[122]  Y. Dan,et al.  Long-range and local circuits for top-down modulation of visual cortex processing , 2014, Science.

[123]  S. Treue,et al.  Basic Neuroscience Research with Nonhuman Primates: A Small but Indispensable Component of Biomedical Research , 2014, Neuron.

[124]  Arthur W. Toga,et al.  Neural Networks of the Mouse Neocortex , 2014, Cell.

[125]  Johannes J. Letzkus,et al.  Long-Range Connectivity Defines Behavioral Specificity of Amygdala Neurons , 2014, Neuron.

[126]  Dimitri M. Kullmann,et al.  Oscillatory multiplexing of population codes for selective communication in the mammalian brain , 2014, Nature Reviews Neuroscience.

[127]  Joshua A. Gordon,et al.  Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety , 2013, Nature Neuroscience.

[128]  W. Newsome,et al.  Context-dependent computation by recurrent dynamics in prefrontal cortex , 2013, Nature.

[129]  James F. Cavanagh,et al.  Common medial frontal mechanisms of adaptive control in humans and rodents , 2013, Nature Neuroscience.

[130]  Michel Thiebaut de Schotten,et al.  A revised limbic system model for memory, emotion and behaviour , 2013, Neuroscience & Biobehavioral Reviews.

[131]  Joshua A. Gordon,et al.  Theta Oscillations in the Medial Prefrontal Cortex Are Modulated by Spatial Working Memory and Synchronize with the Hippocampus through Its Ventral Subregion , 2013, The Journal of Neuroscience.

[132]  Xiao-Jing Wang,et al.  The importance of mixed selectivity in complex cognitive tasks , 2013, Nature.

[133]  A. Diamond Executive functions. , 2014, Handbook of clinical neurology.

[134]  Rodrigo F. Salazar,et al.  Content-Specific Fronto-Parietal Synchronization During Visual Working Memory , 2012, Science.

[135]  Timothy E. J. Behrens,et al.  Double dissociation of value computations in orbitofrontal and anterior cingulate neurons , 2011, Nature Neuroscience.

[136]  Ileana L. Hanganu-Opatz,et al.  Coupled Oscillations Mediate Directed Interactions between Prefrontal Cortex and Hippocampus of the Neonatal Rat , 2011, Neuron.

[137]  A. Sirota,et al.  The hippocampus: hub of brain network communication for memory , 2011, Trends in Cognitive Sciences.

[138]  Markus Siegel,et al.  Neural substrates of cognitive capacity limitations , 2011, Proceedings of the National Academy of Sciences.

[139]  Claus Lamm,et al.  Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain , 2011, NeuroImage.

[140]  Andreas Meyer-Lindenberg,et al.  From maps to mechanisms through neuroimaging of schizophrenia , 2010, Nature.

[141]  György Buzsáki,et al.  Neural Syntax: Cell Assemblies, Synapsembles, and Readers , 2010, Neuron.

[142]  Mehdi Khamassi,et al.  Coherent Theta Oscillations and Reorganization of Spike Timing in the Hippocampal- Prefrontal Network upon Learning , 2010, Neuron.

[143]  D. Durstewitz,et al.  Abrupt Transitions between Prefrontal Neural Ensemble States Accompany Behavioral Transitions during Rule Learning , 2010, Neuron.

[144]  U. Rutishauser,et al.  Human memory strength is predicted by theta-frequency phase-locking of single neurons , 2010, Nature.

[145]  J. Gordon,et al.  Impaired hippocampal–prefrontal synchrony in a genetic mouse model of schizophrenia , 2010, Nature.

[146]  Jin Fan,et al.  Functional Dissociation of the Frontoinsular and Anterior Cingulate Cortices in Empathy for Pain , 2010, The Journal of Neuroscience.

[147]  J. Fell,et al.  Cross-frequency coupling supports multi-item working memory in the human hippocampus , 2010, Proceedings of the National Academy of Sciences.

[148]  Andreas Nieder,et al.  Basic mathematical rules are encoded by primate prefrontal cortex neurons , 2010, Proceedings of the National Academy of Sciences.

[149]  Christian K. Machens,et al.  Behavioral / Systems / Cognitive Functional , But Not Anatomical , Separation of “ What ” and “ When ” in Prefrontal Cortex , 2009 .

[150]  Wei Wu,et al.  A new look at state-space models for neural data , 2010, Journal of Computational Neuroscience.

[151]  A. Bailey,et al.  Are there theory of mind regions in the brain? A review of the neuroimaging literature , 2009, Human brain mapping.

[152]  M. Khamassi,et al.  Replay of rule-learning related neural patterns in the prefrontal cortex during sleep , 2009, Nature Neuroscience.

[153]  Jonathan D. Wallis,et al.  Neurons in the Frontal Lobe Encode the Value of Multiple Decision Variables , 2009, Journal of Cognitive Neuroscience.

[154]  K. Harris,et al.  Spontaneous Events Outline the Realm of Possible Sensory Responses in Neocortical Populations , 2009, Neuron.

[155]  U. Jürgens,et al.  The neural control of vocalization in mammals: a review. , 2009, Journal of voice : official journal of the Voice Foundation.

[156]  John P. Cunningham,et al.  Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity , 2008, NIPS.

[157]  Sonja Grün,et al.  Detecting synfire chain activity using massively parallel spike train recording. , 2008, Journal of neurophysiology.

[158]  David J. Freedman,et al.  Dynamic population coding of category information in inferior temporal and prefrontal cortex. , 2008, Journal of neurophysiology.

[159]  G. Buzsáki,et al.  Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex , 2008, Nature Neuroscience.

[160]  D. R. Euston,et al.  Fast-Forward Playback of Recent Memory Sequences in Prefrontal Cortex During Sleep , 2007, Science.

[161]  L. Swanson,et al.  Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex , 2007, Brain Research Reviews.

[162]  David J. Foster,et al.  Hippocampal theta sequences , 2007, Hippocampus.

[163]  Andreas Nieder,et al.  Semantic Associations between Signs and Numerical Categories in the Prefrontal Cortex , 2007, PLoS biology.

[164]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[165]  J. Fell,et al.  Memory formation by neuronal synchronization , 2006, Brain Research Reviews.

[166]  J. Tanji,et al.  Activity in the Lateral Prefrontal Cortex Reflects Multiple Steps of Future Events in Action Plans , 2006, Neuron.

[167]  G. Buzsáki,et al.  Temporal Encoding of Place Sequences by Hippocampal Cell Assemblies , 2006, Neuron.

[168]  David J. Foster,et al.  Reverse replay of behavioural sequences in hippocampal place cells during the awake state , 2006, Nature.

[169]  H. Sompolinsky,et al.  The tempotron: a neuron that learns spike timing–based decisions , 2006, Nature Neuroscience.

[170]  E. Kandel,et al.  Transient and Selective Overexpression of Dopamine D2 Receptors in the Striatum Causes Persistent Abnormalities in Prefrontal Cortex Functioning , 2006, Neuron.

[171]  Eugene M. Izhikevich,et al.  Polychronization: Computation with Spikes , 2006, Neural Computation.

[172]  J. Kaas,et al.  Specializations of the granular prefrontal cortex of primates: implications for cognitive processing. , 2006, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[173]  M. Wilson,et al.  Theta Rhythms Coordinate Hippocampal–Prefrontal Interactions in a Spatial Memory Task , 2005, PLoS biology.

[174]  Paul Leonard Gabbott,et al.  Prefrontal cortex in the rat: Projections to subcortical autonomic, motor, and limbic centers , 2005, The Journal of comparative neurology.

[175]  C. Koch,et al.  Invariant visual representation by single neurons in the human brain , 2005, Nature.

[176]  Evgueniy V. Lubenov,et al.  Prefrontal Phase Locking to Hippocampal Theta Oscillations , 2005, Neuron.

[177]  Ranulfo Romo,et al.  Flexible Control of Mutual Inhibition: A Neural Model of Two-Interval Discrimination , 2005, Science.

[178]  Yuji Ikegaya,et al.  Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity , 2004, Science.

[179]  M. Roesch,et al.  Neuronal Activity Related to Reward Value and Motivation in Primate Frontal Cortex , 2004, Science.

[180]  D. Munoz,et al.  Look away: the anti-saccade task and the voluntary control of eye movement , 2004, Nature Reviews Neuroscience.

[181]  Günther Palm,et al.  Detecting higher-order interactions among the spiking events in a group of neurons , 1995, Biological Cybernetics.

[182]  Xiao-Jing Wang,et al.  Effects of Neuromodulation in a Cortical Network Model of Object Working Memory Dominated by Recurrent Inhibition , 2004, Journal of Computational Neuroscience.

[183]  B. Kolb,et al.  Do rats have a prefrontal cortex? , 2003, Behavioural Brain Research.

[184]  Joshua W. Brown,et al.  Performance Monitoring by the Anterior Cingulate Cortex During Saccade Countermanding , 2003, Science.

[185]  H. Groenewegen,et al.  The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics , 2003, Neuroscience & Biobehavioral Reviews.

[186]  T. Shallice,et al.  Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. , 2003, Brain : a journal of neurology.

[187]  J. Csicsvari,et al.  Organization of cell assemblies in the hippocampus , 2003, Nature.

[188]  Daniel Durstewitz,et al.  Self-Organizing Neural Integrator Predicts Interval Times through Climbing Activity , 2003, The Journal of Neuroscience.

[189]  Jonathan D. Cohen,et al.  The Neural Basis of Economic Decision-Making in the Ultimatum Game , 2003, Science.

[190]  R. Romo,et al.  Analysing neuronal correlates of the comparison of two sequentially presented sensory stimuli. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[191]  Albert K. Lee,et al.  Memory of Sequential Experience in the Hippocampus during Slow Wave Sleep , 2002, Neuron.

[192]  P. Strick,et al.  Motor areas in the frontal lobe of the primate , 2002, Physiology & Behavior.

[193]  V. Murthy,et al.  Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons , 2002, Nature.

[194]  David J. Freedman,et al.  Representation of the Quantity of Visual Items in the Primate Prefrontal Cortex , 2002, Science.

[195]  V. Brown,et al.  Rodent models of prefrontal cortical function , 2002, Trends in Neurosciences.

[196]  David J. Freedman,et al.  Categorical representation of visual stimuli in the primate prefrontal cortex. , 2001, Science.

[197]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[198]  T. Sejnowski,et al.  Neurocomputational models of working memory , 2000, Nature Neuroscience.

[199]  E. Miller,et al.  Task-specific neural activity in the primate prefrontal cortex. , 2000, Journal of neurophysiology.

[200]  E. Murray,et al.  Control of Response Selection by Reinforcer Value Requires Interaction of Amygdala and Orbital Prefrontal Cortex , 2000, The Journal of Neuroscience.

[201]  S. Sesack,et al.  Limited collateralization of neurons in the rat prefrontal cortex that project to the nucleus accumbens , 2000, Neuroscience.

[202]  J. Tanji,et al.  Neuronal activity in the primate prefrontal cortex in the process of motor selection based on two behavioral rules. , 2000, Journal of neurophysiology.

[203]  J. Price,et al.  The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. , 2000, Cerebral cortex.

[204]  X. Wang,et al.  Synaptic Basis of Cortical Persistent Activity: the Importance of NMDA Receptors to Working Memory , 1999, The Journal of Neuroscience.

[205]  G. Schoenbaum,et al.  Orbitofrontal Cortex and Representation of Incentive Value in Associative Learning , 1999, The Journal of Neuroscience.

[206]  Eugene M. Izhikevich,et al.  Weakly pulse-coupled oscillators, FM interactions, synchronization, and oscillatory associative memory , 1999, IEEE Trans. Neural Networks.

[207]  P S Goldman-Rakic,et al.  The “Psychic” Neuron of the Cerebral Cortex , 1999, Annals of the New York Academy of Sciences.

[208]  Masahiro Kimura,et al.  Learning dynamical systems by recurrent neural networks from orbits , 1998, Neural Networks.

[209]  B. McNaughton,et al.  Firing characteristics of deep layer neurons in prefrontal cortex in rats performing spatial working memory tasks. , 1998, Cerebral cortex.

[210]  P S Goldman-Rakic,et al.  Widespread origin of the primate mesofrontal dopamine system. , 1998, Cerebral cortex.

[211]  S C Rao,et al.  Integration of what and where in the primate prefrontal cortex. , 1997, Science.

[212]  D. Pandya,et al.  Anatomic Organization of the Basilar Pontine Projections from Prefrontal Cortices in Rhesus Monkey , 1997, The Journal of Neuroscience.

[213]  M N Shadlen,et al.  Motion perception: seeing and deciding. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[214]  Jeremy K. Seamans,et al.  Functional differences between the prelimbic and anterior cingulate regions of the rat prefrontal cortex. , 1995, Behavioral neuroscience.

[215]  J J Hopfield,et al.  Rapid local synchronization of action potentials: toward computation with coupled integrate-and-fire neurons. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[216]  E. Audinat,et al.  Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents , 1995, The Journal of comparative neurology.

[217]  T. Preuss Do Rats Have Prefrontal Cortex? The Rose-Woolsey-Akert Program Reconsidered , 1995, Journal of Cognitive Neuroscience.

[218]  W. Singer,et al.  Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation , 1993, Trends in Neurosciences.

[219]  K Zilles,et al.  Cortical projections of the thalamic mediodorsal nucleus in the rat. Definition of the prefrontal cortex. , 1993, Acta neurobiologiae experimentalis.

[220]  T. Jay,et al.  Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris‐leucoagglutinin , 1991, The Journal of comparative neurology.

[221]  P. Goldman-Rakic,et al.  Ipsilateral cortical connections of granular frontal cortex in the strepsirhine primate Galago, with comparative comments on anthropoid primates , 1991, The Journal of comparative neurology.

[222]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[223]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[224]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.

[225]  G. E. Alexander,et al.  Neuron Activity Related to Short-Term Memory , 1971, Science.

[226]  C. Leonard,et al.  The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent connections. , 1969, Brain research.