On the global existence of solutions to a class of fractional differential equations

We present two global existence results for an initial value problem associated to a large class of fractional differential equations. Our approach differs substantially from the techniques employed in the recent literature. By introducing an easily verifiable hypothesis, we allow for immediate applications of a general comparison type result from [V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. TMA 69 (2008), 2677-2682].

[1]  Xiaohong Joe Zhou,et al.  Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. , 2008, Journal of magnetic resonance.

[2]  T. Nonnenmacher,et al.  Fractional integral operators and Fox functions in the theory of viscoelasticity , 1991 .

[3]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[4]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[5]  T. A. A. Broadbent,et al.  Higher Transcendental Functions. III , 1956 .

[6]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[7]  O. Agrawal,et al.  Fractional hamilton formalism within caputo’s derivative , 2006, math-ph/0612025.

[8]  A. Kartsatos Advanced Ordinary Differential Equations , 1980 .

[9]  O. Agrawal,et al.  Advances in Fractional Calculus , 2007 .

[10]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[11]  Malgorzata Klimek,et al.  Fractional sequential mechanics — models with symmetric fractional derivative , 2001 .

[12]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[13]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[14]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[15]  L. Ahlfors Complex Analysis , 1979 .

[16]  R. Metzler,et al.  Relaxation in filled polymers: A fractional calculus approach , 1995 .

[17]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[18]  George M. Zaslavsky Hamiltonian Chaos and Fractional Dynamics , 2005 .

[19]  D.Baleanu,et al.  Lagrangians with linear velocities within Riemann-Liouville fractional derivatives , 2004 .

[20]  Dumitru Baleanu,et al.  New applications of fractional variational principles , 2008 .

[21]  Delfim F. M. Torres,et al.  A formulation of Noether's theorem for fractional problems of the calculus of variations , 2007 .

[22]  D.Baleanu,et al.  Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives , 2005, hep-th/0510071.

[23]  K. Deimling Fixed Point Theory , 2008 .

[24]  Dumitru Baleanu,et al.  Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives , 2005 .

[25]  Dumitru Baleanu,et al.  On exact solutions of a class of fractional Euler–Lagrange equations , 2007, 0708.1433.

[26]  Eqab M. Rabei,et al.  On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative , 2007, 0708.1690.

[27]  K. Tas,et al.  Fractional hamiltonian analysis of higher order derivatives systems , 2006, math-ph/0612024.

[28]  T F Nonnenmacher,et al.  A fractional calculus approach to self-similar protein dynamics. , 1995, Biophysical journal.

[29]  Zaki F. A. El-Raheem Modification of the application of a contraction mapping method on a class of fractional differential equation , 2003, Appl. Math. Comput..

[30]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[31]  V. Lakshmikantham,et al.  Theory of fractional functional differential equations , 2008 .

[32]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[33]  Johannes Weissinger,et al.  Zur Theorie und Anwendung des Iterationsverfahrens , 1952 .

[34]  I. Podlubny Fractional differential equations , 1998 .

[35]  T. Atanacković,et al.  Variational problems with fractional derivatives: Euler–Lagrange equations , 2008, 1101.2961.

[36]  L. Ahlfors Complex analysis : an introduction to the theory of analytic functions of one complex variable / Lars V. Ahlfors , 1984 .

[37]  C. M. Place,et al.  Ordinary Differential Equations , 1982 .

[38]  Malgorzata Klimek,et al.  Lagrangean and Hamiltonian fractional sequential mechanics , 2002 .