Superposition-Based Analysis of First-Order Probabilistic Timed Automata

[1]  Ernst Althaus,et al.  Superposition Modulo Linear Arithmetic SUP(LA) , 2009, FroCoS.

[2]  Marta Z. Kwiatkowska,et al.  Stochastic Games for Verification of Probabilistic Timed Automata , 2009, FORMATS.

[3]  Christoph Weidenbach,et al.  SPASS Version 3.5 , 2009, CADE.

[4]  Christoph Weidenbach,et al.  Labelled splitting , 2008, Annals of Mathematics and Artificial Intelligence.

[5]  Lijun Zhang,et al.  Probabilistic CEGAR , 2008, CAV.

[6]  Christoph Weidenbach,et al.  Labelled Clauses , 2007, CADE.

[7]  Marta Z. Kwiatkowska,et al.  Symbolic model checking for probabilistic timed automata , 2007, Inf. Comput..

[8]  Holger Hermanns,et al.  MODEST: A Compositional Modeling Formalism for Hard and Softly Timed Systems , 2006, IEEE Transactions on Software Engineering.

[9]  Marta Z. Kwiatkowska,et al.  Probabilistic symbolic model checking with PRISM: a hybrid approach , 2004, International Journal on Software Tools for Technology Transfer.

[10]  Marta Z. Kwiatkowska,et al.  Performance analysis of probabilistic timed automata using digital clocks , 2003, Formal Methods Syst. Des..

[11]  Marta Z. Kwiatkowska,et al.  Probabilistic Model Checking of Deadline Properties in the IEEE 1394 FireWire Root Contention Protocol , 2003, Formal Aspects of Computing.

[12]  Andreas Nonnengart,et al.  Hybrid Systems Verification by Location Elimination , 2000, HSCC.

[13]  Christoph Weidenbach,et al.  Towards an Automatic Analysis of Security Protocols in First-Order Logic , 1999, CADE.

[14]  Harald Ganzinger,et al.  Refutational theorem proving for hierarchic first-order theories , 1994, Applicable Algebra in Engineering, Communication and Computing.

[15]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[16]  Christoph Weidenbach,et al.  Combining Superposition, Sorts and Splitting , 2001, Handbook of Automated Reasoning.