Comparison of 68Ga-DOTATATE and 18F-fluorodeoxyglucose PET/CT in the detection of recurrent medullary thyroid carcinoma

[1]  A. Groves,et al.  Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga‐DOTATATE (DOTA‐DPhe1,Tyr3‐octreotate) and 18F‐FDG , 2008, Cancer.

[2]  C. Jimenez,et al.  Management of medullary thyroid carcinoma. , 2008, Endocrinology and metabolism clinics of North America.

[3]  D. Rubello,et al.  Role of PET in medullary thyroid carcinoma. , 2008, Minerva endocrinologica.

[4]  P. Castaldi,et al.  Nuclear medicine procedures in the diagnosis and therapy of medullary thyroid carcinoma. , 2008, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[5]  E. Baudin,et al.  Imaging medullary thyroid carcinoma with persistent elevated calcitonin levels. , 2007, The Journal of clinical endocrinology and metabolism.

[6]  D. Ball Medullary thyroid cancer: monitoring and therapy. , 2007, Endocrinology and metabolism clinics of North America.

[7]  S. Larson,et al.  Diagnostic Accuracy of 18F-FDG PET in Restaging Patients with Medullary Thyroid Carcinoma and Elevated Calcitonin Levels , 2007, Journal of Nuclear Medicine.

[8]  A. Iagaru,et al.  Detection of Occult Medullary Thyroid Cancer Recurrence with 2-Deoxy-2-[F-18]fluoro-d-glucose-PET and PET/CT , 2007, Molecular Imaging and Biology.

[9]  R. Valkema,et al.  Peptide Receptor Radionuclide Therapy with radiolabelled somatostatin analogues in patients with somatostatin receptor positive tumours , 2007, Acta oncologica.

[10]  Richard P Baum,et al.  Imaging of neuroendocrine tumors. , 2006, Seminars in nuclear medicine.

[11]  M. Pelizzo,et al.  Selective activation of somatostatin receptor subtypes differentially modulates secretion and viability in human medullary thyroid carcinoma primary cultures: potential clinical perspectives. , 2006, The Journal of clinical endocrinology and metabolism.

[12]  Thomas F Hany,et al.  Integrated PET/CT: current applications and future directions. , 2006, Radiology.

[13]  J. Plukker,et al.  Impact of 18F-Fluoro-2-Deoxy-D-Glucose Positron Emission Tomography (FDG-PET) in Patients with Biochemical Evidence of Recurrent or Residual Medullary Thyroid Cancer , 2004, Annals of Surgical Oncology.

[14]  M. Cremonesi,et al.  Peptide receptor radionuclide therapy with radiolabelled somatostatin analogues: ten years experience , 2008 .

[15]  E. Baudin,et al.  Rationale for central and bilateral lymph node dissection in sporadic and hereditary medullary thyroid cancer. , 2003, The Journal of clinical endocrinology and metabolism.

[16]  J. Bredow,et al.  Fluorine-18 fluorodeoxyglucose positron emission tomography in medullary thyroid cancer: results of a multicentre study , 2001, European Journal of Nuclear Medicine.

[17]  E. Nitzsche,et al.  Radiopeptide transmitted internal irradiation of non-iodophil thyroid cancer and conventionally untreatable medullary thyroid cancer using [90Y]-DOTA-D-Phe1-Tyr3-octreotide: a pilot study , 2001, Nuclear medicine communications.

[18]  M. Papotti,et al.  Immunohistochemical detection of somatostatin receptor types 1–5 in medullary carcinoma of the thyroid , 2001, Clinical endocrinology.

[19]  J. Reubi,et al.  Affinity profiles for human somatostatin receptor subtypes SST1–SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use , 2000, European Journal of Nuclear Medicine.

[20]  C. Baird,et al.  The pilot study. , 2000, Orthopedic nursing.

[21]  Q. Duh,et al.  Medullary thyroid carcinoma , 2000, Cancer.

[22]  J. Moley,et al.  Patterns of nodal metastases in palpable medullary thyroid carcinoma: recommendations for extent of node dissection. , 1999, Annals of surgery.

[23]  A. de Leiva,et al.  Somatostatin and somatostatin receptor subtype gene expression in medullary thyroid carcinoma. , 1998, The Journal of clinical endocrinology and metabolism.

[24]  J. Moley,et al.  Evaluation of fluorodeoxyglucose-positron emission tomographic scanning and its association with glucose transporter expression in medullary thyroid carcinoma and pheochromocytoma: a clinical and molecular study. , 1997, Surgery.

[25]  Sebastiano Filetti,et al.  Determination of calcitonin levels in C-cell disease: clinical interest and potential pitfalls , 2009, Nature Clinical Practice Endocrinology &Metabolism.

[26]  M. Gapany 18F-Dihydroxyphenylalanine PET in Patients with Biochemical Evidence of Medullary Thyroid Cancer: Relation to Tumor Differentiation , 2008 .

[27]  A. Pinchera,et al.  Impact of routine measurement of serum calcitonin on the diagnosis and outcome of medullary thyroid cancer: experience in 10,864 patients with nodular thyroid disorders. , 2004, The Journal of clinical endocrinology and metabolism.

[28]  P. Ágoston,et al.  18F-FDG PET detection of lymph node metastases in medullary thyroid carcinoma. , 2002, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[29]  Wendy S. Becker,et al.  Metabolic and receptor imaging of metastatic medullary thyroid cancer: does anti-CEA and somatostatin-receptor scintigraphy allow for prognostic predictions? , 1999, European Journal of Nuclear Medicine.