Illusion optics: Optically transforming the nature and the location of electromagnetic emissions

Complex electromagnetic structures can be designed by using the powerful concept of transformation electromagnetics. In this study, we define a spatial coordinate transformation that shows the possibility of designing a device capable of producing an illusion on an antenna radiation pattern. Indeed, by compressing the space containing a radiating element, we show that it is able to change the radiation pattern and to make the radiation location appear outside the latter space. Both continuous and discretized models with calculated electromagnetic parameter values are presented. A reduction of the electromagnetic material parameters is also proposed for a possible physical fabrication of the device with achievable values of permittivity and permeability that can be obtained from existing well-known metamaterials. Following that, the design of the proposed antenna using a layered metamaterial is presented. Full wave numerical simulations using Finite Element Method are performed to demonstrate the performances of such a device.

[1]  Shuang Zhang,et al.  Creation of Ghost Illusions Using Wave Dynamics in Metamaterials , 2013 .

[2]  J. Pendry,et al.  Hiding under the carpet: a new strategy for cloaking. , 2008, Physical review letters.

[3]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[4]  Dylan Germain,et al.  Design and experimental demonstration of a high-directive emission with optical transformations , 2011, ArXiv.

[5]  Shah Nawaz Burokur,et al.  Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials. , 2013, Physical review letters.

[6]  Qiang Cheng,et al.  Illusion media: Generating virtual objects using realizable metamaterials , 2009, 0909.3619.

[7]  Steven A. Cummer,et al.  Conformal array design with transformation electromagnetics , 2009 .

[8]  M. Qiu,et al.  Cylindrical superlens by a coordinate transformation , 2008, 0804.2850.

[9]  Shah Nawaz Burokur,et al.  Transformation Electromagnetics for Antennas With an Illusion on the Radiation Pattern , 2014, IEEE Antennas and Wireless Propagation Letters.

[10]  David R. Smith,et al.  Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations , 2007, 0706.2452.

[11]  Steven A. Cummer,et al.  Electromagnetic source transformations using superellipse equations , 2009 .

[12]  Huanyang Chen,et al.  Design and experimental realization of a broadband transformation media field rotator at microwave frequencies. , 2009, Physical review letters.

[13]  J. Pendry,et al.  Transformation-optical design of adaptive beam bends and beam expanders. , 2008, Optics express.

[14]  Guangyou Fang,et al.  Experimental realization of a circuit-based broadband illusion-optics analogue. , 2010, Physical review letters.

[15]  Shah Nawaz Burokur,et al.  Spiral-like multi-beam emission via transformation electromagnetics , 2014 .

[16]  Xiangang Luo,et al.  Design of electromagnetic refractor and phase transformer using coordinate transformation theory. , 2008, Optics express.

[17]  Lixin Ran,et al.  Controlling the Emission of Electromagnetic Source , 2008 .

[18]  Jack Ng,et al.  Illusion optics: the optical transformation of an object into another object. , 2009, Physical review letters.

[19]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[20]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[21]  T. Tyc,et al.  An omnidirectional retroreflector based on the transmutation of dielectric singularities. , 2009, Nature materials.

[22]  J. Pendry,et al.  Perfect cylindrical lenses. , 2003, Optics express.

[23]  Tie Jun Cui,et al.  Radar illusion via metamaterials. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  David R. Smith,et al.  Extreme-angle broadband metamaterial lens. , 2010, Nature materials.

[25]  David R. Smith,et al.  Electric-field-coupled resonators for negative permittivity metamaterials , 2006 .

[26]  David R. Smith,et al.  Transformation-optical design of sharp waveguide bends and corners , 2008 .

[27]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[28]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[29]  T. Cui,et al.  Layered high-gain lens antennas via discrete optical transformation , 2008 .

[30]  David R. Smith,et al.  Optical design of reflectionless complex media by finite embedded coordinate transformations. , 2007, Physical review letters.

[31]  J. Huangfu,et al.  Application of coordinate transformation in bent waveguides , 2008 .

[32]  Douglas H. Werner,et al.  Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission , 2011 .

[33]  Tie Jun Cui,et al.  A Planar Focusing Antenna Design with the Quasi-Conformal Mapping , 2010 .

[34]  P. Sheng,et al.  Transformation optics and metamaterials. , 2010, Nature materials.

[35]  Shah Nawaz Burokur,et al.  Waveguide taper engineering using coordinate transformation technology. , 2010, Optics express.

[36]  S. Burokur,et al.  Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index , 2009 .

[37]  A. de Lustrac,et al.  Reducing physical appearance of electromagnetic sources. , 2013, Optics express.

[38]  Qiang Cheng,et al.  Shrinking an arbitrary object as one desires using metamaterials , 2011 .