Proton-induced displacement damage distributions and extremes in silicon microvolumes charge injection device

An analytic approach for determining the pixel-to-pixel distribution of particle-induced damage and damage extremes in microvolumes representative of focal plane array pixel geometries is presented. Comparisons between predicted and measured dark current distributions in a silicon charge injection device (CID) show excellent agreement for 12- and 63-MeV proton-induced damage. The calculated and measured damage extremes are compared using extreme value statistical analysis. The calculations reveal how high-energy recoils from proton-induced nuclear reactions strongly influence the pixel-to-pixel variation in damage as well as the damage extremes. A comparison between Si and GaAs pixels with equal volumes and equal 12-MeV proton fluences indicates that both the average damage and its variance are significantly greater in GaAs. >