A theory of fuzzy uniformities with applications to the fuzzy real lines

Abstract For each completely distributive lattice L with order-reversing involution, the fuzzy real line R (L) is uniformizable by a uniformity which both generates the canonical (fuzzy) topology and induces a pseudometric generating the canonical topology. If L is also a chain, the usual addition and multiplication defined on R  R ({0, 1}) extend jointly (fuzzy) continuously to ⊕ and ⊙ on R (L). Three fundamental questions in fuzzy sets until now are: Question A. If L1≅L2, is R (L1) uniformly isomorphic to R (L2) in some sense? Question B. For each chain L, is ⊕ (jointly) uniformly continuous in a sense which guarantees its (joint) continuity on R (L)? Question C. Is R (L) a complete pseudometric space in some sense? We construct categories QU and U using the [quasi-] uniformities of B. Hutton which enable us to answer these questions in the affirmative. These results enhance the canonical standing of the fuzzy real lines and so give additional justification for answering in the affirmative: Question D. Does fuzzy topology have deep, specific, canonical examples?

[1]  Stephen E. Rodabaugh,et al.  Connectivity and the L-fuzzy unit interval , 1982 .

[2]  Ulrich Höhle,et al.  Probabilistic topologies induced by L-fuzzy uniformities , 1982 .

[3]  R. H. Warren Neighborhoods, bases and continuity in fuzzy topological spaces , 1978 .

[4]  R. Lowen Compact Hausdorff fuzzy topological spaces are topological , 1981 .

[5]  R. Lowen,et al.  Hyperspaces of fuzzy sets , 1983 .

[6]  R. Lowen A Comparison of Different Compactness Notions in Fuzzy Topological Spaces , 1978 .

[7]  M. A. Erceg,et al.  Metric spaces in fuzzy set theory , 1979 .

[8]  Stephen E. Rodabaugh,et al.  Errata: Complete fuzzy topological hyperfields and fuzzy multiplication in the fuzzy real lines , 1986 .

[9]  D. Dubois,et al.  Towards fuzzy differential calculus part 1: Integration of fuzzy mappings , 1982 .

[10]  Stephen E. Rodabaugh,et al.  The Hausdorff separation axiom for fuzzy topological spaces , 1980 .

[11]  Stephen E. Rodabaugh,et al.  A categorical accommodation of various notions of fuzzy topology , 1983 .

[12]  Ivan L. Reilly,et al.  Separation axioms in fuzzy topological spaces , 1980 .

[13]  P. Wuyts,et al.  Concerning the constants in fuzzy topology , 1988 .

[14]  B. Schweizer Multiplications on the space of probability distribution functions , 1975 .

[15]  Stephen E. Rodabaugh Suitability in fuzzy topological spaces , 1981 .

[16]  Michael A. Erceg,et al.  Functions, equivalence relations, quotient spaces and subsets in fuzzy set theory , 1980 .

[17]  B. Hutton,et al.  Products of fuzzy topological spaces , 1980 .

[18]  R. Lowen,et al.  Completeness, Compactness, and Precompactness in Fuzzy Uniform Spaces, Part II , 1982 .

[19]  Pu Pao-Ming,et al.  Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence , 1980 .

[20]  R. Lowen Convergence in fuzzy topological spaces , 1977 .

[21]  S. Naimpally,et al.  Quasi-uniform topological spaces , 1966 .

[22]  Richard H. Warren,et al.  Convergence in fuzzy topology , 1983 .

[23]  Joseph A. Goguen,et al.  The fuzzy tychonoff theorem , 1973 .

[24]  J. Goguen L-fuzzy sets , 1967 .

[25]  D. Dubois,et al.  Fuzzy real algebra: Some results , 1979 .

[26]  B. Hutton,et al.  Uniformities on fuzzy topological spaces , 1977 .

[27]  Ulrich H ohle Probabilistic metrization of fuzzy uniformities , 1982 .

[28]  Albert J. Klein Closure in fuzzy topology , 1981 .

[29]  R. Lowen,et al.  ^{}, the hyperspace of fuzzy sets, a natural nontopological fuzzy topological space , 1983 .

[30]  H. Sherwood On E-Spaces and their Relation to Other Classes of Probabilistic Metric Spaces , 1969 .

[31]  T. Gantner,et al.  COMPACTNESS IN FUZZY TOPOLOGICAL SPACES , 1978 .

[32]  B. Hutton Normality in fuzzy topological spaces , 1975 .

[33]  A. J. Klein,et al.  Generating fuzzy topologies with semi-closure operators , 1983 .

[34]  R. Lowen,et al.  On (R (L), o) , 1983 .

[35]  K. Menger Statistical Metrics. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Stephen E. Rodabaugh,et al.  Separation axioms and the fuzzy real lines , 1983 .

[37]  D. Dubois,et al.  Towards fuzzy differential calculus part 2: Integration on fuzzy intervals , 1982 .

[38]  Ulrich Höhle Probabilistisch kompakte L-unscharfe Mengen , 1979 .

[39]  R. Lowen,et al.  A complete characterization of the level spaces of R(I) and I(I) , 1986 .

[40]  David H. Foster,et al.  Fuzzy topological groups , 1979 .

[41]  Liu Ying-Ming,et al.  Fuzzy topology. II. Product and quotient spaces , 1980 .

[42]  Richard H Warren Optimality in fuzzy topological polysystems , 1976 .

[43]  Ivan Kramosil,et al.  Fuzzy metrics and statistical metric spaces , 1975, Kybernetika.

[44]  D. Dubois,et al.  Operations on fuzzy numbers , 1978 .

[45]  S. E. Rodabaugh Fuzzy addition in the L-fuzzy real line , 1982 .

[46]  S. E. Rodabaugh A lattice of continuities for fuzzy topological spaces , 1981 .

[47]  A. J. Klein,et al.  Generalizing the L-fuzzy unit interval , 1984 .

[48]  Richard H. Warren,et al.  Fuzzy topologies characterized by neighborhood systems , 1979 .

[49]  R. Lowen,et al.  On the Existence of Natural Fuzzy Topologies on Spaces of Probability Measures , 1984 .

[50]  C. Wong,et al.  Fuzzy topology: Product and quotient theorems , 1974 .

[51]  Robert Lowen,et al.  Fuzzy neighborhood spaces , 1982 .

[52]  R. Lowen Fuzzy topological spaces and fuzzy compactness , 1976 .

[53]  R. Lowen Connectedness in fuzzy topological spaces , 1981 .

[54]  B. Schweizer,et al.  Statistical metric spaces. , 1960 .

[55]  D. Dubois,et al.  Towards fuzzy differential calculus part 3: Differentiation , 1982 .

[56]  Ulrich Höhle,et al.  G-fuzzy topologies on algebraic structures , 1985 .

[57]  U. Höhle Probabilistic uniformization of fuzzy topologies , 1978 .

[58]  Ulrich Höhle,et al.  Probabilistische Metriken auf der Menge der nicht negativen Verteilungsfunktionen , 1978 .

[59]  R. Lowen,et al.  Fuzzy Uniform Spaces , 1981 .