Comparative study between N-body and Fokker–Planck simulations for rotating star clusters – I. Equal-mass system

We have carried out N-body simulations for rotating star clusters with equal mass and compared the results with Fokker-Planck models. These two different approaches are found to produce fairly similar results, although there are some differences with regard to the detailed aspects. We confirmed the acceleration of the core collapse of a cluster due to an initial non-zero angular momentum and found a similar evolutionary trend in the central density and velocity dispersion in both simulations. The degree of acceleration depends on the initial angular momentum. Angular momentum is being lost from the cluster due to the evaporation of stars with a large angular momentum on a relaxation time scale.

[1]  Jeremy Goodman On Gravothermal Oscillations , 1987 .

[2]  Fokker-Planck Models of Star Clusters with Anisotropic Velocity Distributions II. Post-Collapse Evolution , 1995, astro-ph/9609025.

[3]  J. Gunn,et al.  Three-Integral Models of Globular Clusters , 1987 .

[4]  D. Heggie,et al.  Statistics of N-body simulations — IV. Unequal masses with a tidal field , 1997 .

[6]  Seppo Mikkola,et al.  An implementation ofN-body chain regularization , 1993 .

[7]  Stuart L. Shapiro,et al.  Random Gravitational Encounters and the Evolution of Spherical Systems. III. Halo , 1971 .

[8]  E. Stiefel,et al.  Perturbation theory of Kepler motion based on spinor regularization. , 1965 .

[9]  M. Freitag,et al.  A new Monte Carlo code for star cluster simulations - I. Relaxation , 2001, astro-ph/0102139.

[10]  D. Merritt,et al.  Performance Analysis of Direct N-Body Algorithms on Special-Purpose Supercomputers , 2006, astro-ph/0608125.

[11]  Simon Portegies Zwart,et al.  Monte Carlo Simulations of Globular Cluster Evolution. I. Method and Test Calculations , 2000 .

[12]  A. Just,et al.  N‐body models of rotating globular clusters , 2007, astro-ph/0702206.

[13]  H. Cohn,et al.  Late core collapse in star clusters and the gravothermal instability , 1980 .

[14]  Makoto Taiji,et al.  Scientific simulations with special purpose computers - the GRAPE systems , 1998 .

[15]  D. Heggie,et al.  Statistics of N-Body Simulations - Part Two - Equal Masses after Core Collapse , 1994, astro-ph/9403024.

[16]  A. Noels The galactic halo : from globular clusters to field stars : proceedings of the 35th Liège International Astrophysical Colloquium, July 5-8, 1999 , 2000 .

[17]  Simon F. Portegies Zwart,et al.  The Evolution of Globular Clusters in the Galaxy , 1999, astro-ph/9903366.

[18]  D. Heggie,et al.  Statistics of N-body simulations – I. Equal masses before core collapse , 1993, astro-ph/9305008.

[19]  Runaway collisions in young star clusters – I. Methods and tests , 2005, astro-ph/0503129.

[20]  Rainer Spurzem,et al.  Direct collisional simulation of 10000 particles past core collapse , 1996 .

[21]  S. Aarseth,et al.  An efficient integration method for binaries in N-body simulations , 1998 .

[22]  Hans-Peter Bischof,et al.  EFFICIENT MERGER OF BINARY SUPERMASSIVE BLACK HOLES IN NON- AXISYMMETRIC GALAXIES , 2006 .

[23]  Jeremy Goodman,et al.  Influence of the Stellar Mass Function on the Evaporation Rate of Tidally Limited Postcollapse Globular Clusters , 1994 .

[24]  Jeremiah P. Ostriker,et al.  The evolution and final disintegration of spherical stellar systems in a steady galactic tidal field , 1987 .

[25]  Mirek Giersz Monte Carlo simulations of star clusters - I. First Results , 1998 .

[26]  S. Aarseth,et al.  A slow-down treatment for close binaries , 1996 .

[27]  M. Giersz,et al.  Anisotropic gaseous models of tidally limited star clusters: comparison with other methods , 2004, astro-ph/0412698.

[28]  Junichiro Makino,et al.  Evolution of Massive Black Hole Binaries , 2003 .

[29]  S. Aarseth From NBODY1 to NBODY6: The Growth of an Industry , 1999 .

[30]  J. Makino,et al.  GRAPE-6A: A Single-Card GRAPE-6 for Parallel PC-GRAPE Cluster Systems , 2005, astro-ph/0504407.

[31]  Japan.,et al.  Dynamical evolution of rotating stellar systems – II. Post-collapse, equal-mass system , 2001, astro-ph/0109062.

[32]  H. Baumgardt Scaling of N-body calculations , 2000, astro-ph/0012330.

[33]  S. Aarseth,et al.  A chain regularization method for the few-body problem , 1989 .

[34]  Toshiyuki Fukushige,et al.  GRAPE-6: Massively-Parallel Special-Purpose Computer for Astrophysical Particle Simulations , 2003, astro-ph/0310702.

[35]  S. Zwart,et al.  The Disruption of Globular Star Clusters in the Galaxy: A Comparative Analysisbetween Fokker-Planck and N-Body Models , 1998, astro-ph/9805310.

[36]  Emil Khalisi,et al.  A comprehensive nbody study of mass segregation in star clusters: energy equipartition and escape , 2006, astro-ph/0602570.

[37]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[38]  J. Makino,et al.  Evolution of Massive Black Hole Triples. I. Equal-Mass Binary-Single Systems , 2005, astro-ph/0511391.

[39]  Arlette Noels-Grötsch,et al.  The Galactic halo. From globular clusters to field stars. Proceedings. , 2000 .

[40]  Sejong University,et al.  Effects of external tidal field on the evolution of the outer regions of multi-mass star clusters , 2005, astro-ph/0503216.

[41]  P. Hut,et al.  Astrophysical Supercomputing using Particle Simulations , 2003 .

[42]  R. Mathieu,et al.  Random gravitational encounters and the evolution of spherical systems. VIII. Clusters with an initial distribution of binaries , 1980 .