A generalized weighted linear predictor frequency estimation approach for a complex sinusoid

Based on linear prediction and weighted least squares, three simple iterative algorithms for frequency estimation of a complex sinusoid in additive white noise are devised. The proposed approach, which utilizes the first-order as well as higher order linear prediction terms simultaneously but does not require phase unwrapping, can be considered as a generalized version of the weighted linear predictor frequency estimator. In particular, convergence as well as mean and variance analysis of the most computationally efficient frequency estimator, namely, GWLP 2, are provided. Computer simulations are included to contrast the performance of the proposed algorithms with several conventional computationally attractive frequency estimators and Crame/spl acute/r-Rao lower bound for different frequencies, observation lengths, and signal-to-noise ratios.

[1]  I. Vaughan L. Clarkson,et al.  Analysis of the variance threshold of Kay's weighted linear predictor frequency estimator , 1994, IEEE Trans. Signal Process..

[2]  James H. McClellan,et al.  Exact equivalence of the Steiglitz-McBride iteration and IQML , 1991, IEEE Trans. Signal Process..

[3]  Yingbo Hua The most efficient implementation of the IQML algorithm , 1994, IEEE Trans. Signal Process..

[4]  Michael Mao Wang,et al.  An iterative algorithm for single-frequency estimation , 2002, IEEE Trans. Signal Process..

[5]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[6]  L. Mcbride,et al.  A technique for the identification of linear systems , 1965 .

[7]  G. W. Lank,et al.  A Semicoherent Detection and Doppler Estimation Statistic , 1973, IEEE Transactions on Aerospace and Electronic Systems.

[8]  J. Schmee Matrices with Applications in Statistics , 1982 .

[9]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[10]  Barry G. Quinn,et al.  The Estimation and Tracking of Frequency , 2001 .

[11]  Steven Kay,et al.  Accurate frequency estimation at low signal-to-noise ratio , 1984 .

[12]  M. Aoki,et al.  On a priori error estimates of some identification methods , 1970 .

[13]  Barry G. Quinn,et al.  A fast efficient technique for the estimation of frequency , 1991 .

[14]  H. Luetkepohl The Handbook of Matrices , 1996 .

[15]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[16]  M. Narasimha,et al.  An improved single frequency estimator , 1996, IEEE Signal Processing Letters.

[17]  B. Hofmann-Wellenhof,et al.  Introduction to spectral analysis , 1986 .

[18]  K. D. Tocher,et al.  Basic theorems in matrix theory , 1960 .

[19]  F. Graybill,et al.  Matrices with Applications in Statistics. , 1984 .

[20]  Jian Li,et al.  Comparative study of IQML and MODE direction-of-arrival estimators , 1998, IEEE Trans. Signal Process..

[21]  W. M. Carey,et al.  Digital spectral analysis: with applications , 1986 .

[22]  Yoram Bresler,et al.  Exact maximum likelihood parameter estimation of superimposed exponential signals in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[23]  Ramdas Kumaresan,et al.  An algorithm for pole-zero modeling and spectral analysis , 1986, IEEE Trans. Acoust. Speech Signal Process..

[24]  Malcolm D. Macleod,et al.  Fast nearly ML estimation of the parameters of real or complex single tones or resolved multiple tones , 1998, IEEE Trans. Signal Process..

[25]  D.G. Dudley,et al.  Dynamic system identification experiment design and data analysis , 1979, Proceedings of the IEEE.

[26]  Michael P. Fitz,et al.  Further results in the fast estimation of a single frequency , 1994, IEEE Trans. Commun..

[27]  L. C. Palmer,et al.  Coarse frequency estimation using the discrete Fourier transform (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[28]  Peter Händel,et al.  Frequency estimation from proper sets of correlations , 2002, IEEE Trans. Signal Process..

[29]  Steven Kay,et al.  A Fast and Accurate Single Frequency Estimator , 2022 .

[30]  Dharmendra Lingaiah,et al.  The Estimation and Tracking of Frequency , 2004 .

[32]  Steven A. Tretter,et al.  Estimating the frequency of a noisy sinusoid by linear regression , 1985, IEEE Trans. Inf. Theory.

[33]  Peter Händel Markov-based single-tone frequency estimation , 1998 .

[34]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[35]  J. A. Johnson,et al.  Extending the threshold and frequency range for phase-based frequency estimation , 1999, IEEE Trans. Signal Process..