3D‐Printing Strong High‐Resolution Antioxidant Bioresorbable Vascular Stents

[1]  Guillermo Antonio Ameer,et al.  Novel Citric Acid‐Based Biodegradable Elastomers for Tissue Engineering , 2004 .

[2]  C. Hamm,et al.  Current status of bioresorbable scaffolds in the treatment of coronary artery disease. , 2014, Journal of the American College of Cardiology.

[3]  Gerhard Ziemer,et al.  Sirolimus-Eluting Stents for the Treatment of Obstructive Superficial Femoral Artery Disease: Six-Month Results , 2002, Circulation.

[4]  Christopher Piorkowski,et al.  Prevalence and clinical impact of stent fractures after femoropopliteal stenting. , 2005, Journal of the American College of Cardiology.

[5]  S. Saito New horizon of bioabsorbable stent , 2005, Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions.

[6]  A. Colombo,et al.  Biodegradable stents : "fulfilling the mission and stepping away". , 2000, Circulation.

[7]  Sean S. Moore,et al.  Shrinking the Supply Chain for Implantable Coronary Stent Devices , 2015, Annals of Biomedical Engineering.

[8]  K. Robinson,et al.  Endothelium-dependent vasomotor dysfunction in pig coronary arteries with Paclitaxel-eluting stents is associated with inflammation and oxidative stress. , 2009, JACC. Cardiovascular interventions.

[9]  M. Kibbe,et al.  Photo-crosslinked Biodegradable Elastomers for Controlled Nitric Oxide Delivery. , 2013, Biomaterials science.

[10]  D. Mantovani,et al.  Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents. , 2009, Journal of biomedical materials research. Part A.

[11]  J. Fisher,et al.  Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. , 2002, Journal of biomedical materials research.

[12]  Shih-Jung Liu,et al.  Promoting endothelial recovery and reducing neointimal hyperplasia using sequential-like release of acetylsalicylic acid and paclitaxel-loaded biodegradable stents , 2014, International journal of nanomedicine.

[13]  J. de Haro,et al.  Primary Nitinol Stenting in Femoropopliteal Occlusive Disease: A Meta-Analysis of Randomized Controlled Trials , 2012, Journal of endovascular therapy : an official journal of the International Society of Endovascular Specialists.

[14]  Jian Yang,et al.  Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering. , 2007, Journal of biomedical materials research. Part A.

[15]  Elliot L Chaikof,et al.  Microfabrication and nanotechnology in stent design. , 2011, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[16]  Bernard Chevalier,et al.  Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis: 12-month clinical and imaging outcomes. , 2011, Journal of the American College of Cardiology.

[17]  R. Virmani,et al.  Lumen gain and restoration of pulsatility after implantation of a bioresorbable vascular scaffold in porcine coronary arteries. , 2014, JACC. Cardiovascular interventions.

[18]  Jian Yang,et al.  Engineering biodegradable polyester elastomers with antioxidant properties to attenuate oxidative stress in tissues. , 2014, Biomaterials.

[19]  Nicholas X. Fang,et al.  Projection micro-stereolithography using digital micro-mirror dynamic mask , 2005 .

[20]  G. Ameer,et al.  Biodegradable Elastomers with Antioxidant and Retinoid-like Properties. , 2016, ACS biomaterials science & engineering.

[21]  Patrick W Serruys,et al.  The ABSORB bioresorbable vascular scaffold: an evolution or revolution in interventional cardiology? , 2012, Hellenic journal of cardiology : HJC = Hellenike kardiologike epitheorese.

[22]  Jun-Kyu Park,et al.  In vivo evaluation and characterization of a bio-absorbable drug-coated stent fabricated using a 3D-printing system , 2015 .

[23]  Daniel S. Levi,et al.  Materials and Manufacturing Technologies Available for Production of a Pediatric Bioabsorbable Stent , 2013, BioMed research international.

[24]  Jian Yang,et al.  Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. , 2006, Biomaterials.

[25]  M. Runge,et al.  Differential Activation of Mitogenic Signaling Pathways in Aortic Smooth Muscle Cells Deficient in Superoxide Dismutase Isoforms , 2005, Arteriosclerosis, thrombosis, and vascular biology.

[26]  Andrés J. García,et al.  Minimally invasive, longitudinal monitoring of biomaterial-associated inflammation by fluorescence imaging. , 2011, Biomaterials.

[27]  F. Bonomini,et al.  Atherosclerosis and oxidative stress. , 2008, Histology and histopathology.

[28]  Jian Yang,et al.  A thermoresponsive biodegradable polymer with intrinsic antioxidant properties. , 2014, Biomacromolecules.

[29]  T. Meade,et al.  Enabling non-invasive assessment of an engineered endothelium on ePTFE vascular grafts without increasing oxidative stress. , 2015, Biomaterials.

[30]  G. Ameer,et al.  A polymer-extracellular matrix composite with improved thromboresistance and recellularization properties. , 2015, Acta biomaterialia.

[31]  J. Fisher,et al.  Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. , 2002, Biomaterials.

[32]  Diego Mantovani,et al.  Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities , 2011, International journal of molecular sciences.

[33]  Liping Tang,et al.  Noninvasive assessment of localized inflammatory responses. , 2012, Free radical biology & medicine.

[34]  Chee Kai Chua,et al.  Rapid Prototyping and Tooling of Custom-Made Tracheobronchial Stents , 2002 .

[35]  Liping Tang,et al.  Review: Bioresorbable polymeric stents: current status and future promise , 2003, Journal of biomaterials science. Polymer edition.

[36]  M. Runge,et al.  Oxidative Stress and Vascular Disease , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[37]  Vera A. Schulte,et al.  Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting , 2012, Journal of Materials Science: Materials in Medicine.

[38]  M. Kibbe,et al.  Poly(diol-co-citrate)s as novel elastomeric perivascular wraps for the reduction of neointimal hyperplasia. , 2011, Macromolecular bioscience.

[39]  Giang-Huong Duong,et al.  Catalase Overexpression Reduces Lactic Acid-Induced Oxidative Stress in Saccharomyces cerevisiae , 2009, Applied and Environmental Microbiology.

[40]  John R. Tumbleston,et al.  Continuous liquid interface production of 3D objects , 2015, Science.

[41]  D. Cho,et al.  Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. , 2011, Biomaterials.

[42]  J. Loscalzo,et al.  Mechanisms of oxidative stress and vascular dysfunction , 2003, Postgraduate medical journal.

[43]  S. Jens,et al.  Randomized trials for endovascular treatment of infrainguinal arterial disease: systematic review and meta-analysis (Part 1: Above the knee). , 2014, European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery.

[44]  Patrick W Serruys,et al.  Bioresorbable Scaffold: The Advent of a New Era in Percutaneous Coronary and Peripheral Revascularization? , 2011, Circulation.