Eigenvectors of random graphs: Nodal Domains
暂无分享,去创建一个
[1] V. Vu,et al. Approximating the Independence Number and the Chromatic Number in Expected Polynomial Time , 2000, J. Comb. Optim..
[2] M. Rudelson,et al. Euclidean embeddings in spaces of finite volume ratio via random matrices , 2005 .
[3] Van H. Vu. Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2009 .
[4] D. Stroock,et al. Probability Theory: An Analytic View. , 1995 .
[5] M. Rudelson,et al. The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.
[6] L. Lovász. Combinatorial problems and exercises , 1979 .
[7] M. Rudelson. Invertibility of random matrices: norm of the inverse , 2005, math/0507024.
[8] J. Leydold,et al. Discrete Nodal Domain Theorems , 2000, math/0009120.
[9] R. Paley,et al. A note on analytic functions in the unit circle , 1932, Mathematical Proceedings of the Cambridge Philosophical Society.
[10] T. Tao,et al. Random Matrices: the Distribution of the Smallest Singular Values , 2009, 0903.0614.
[11] Uzy Smilansky,et al. Nodal domains on graphs - How to count them and why? , 2007, 0711.3416.
[12] I. Chavel. Eigenvalues in Riemannian geometry , 1984 .
[13] Jitendra Malik,et al. Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[14] M. Rudelson,et al. Smallest singular value of random matrices and geometry of random polytopes , 2005 .
[15] Ann B. Lee,et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[16] Alex Pothen,et al. PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .
[17] Yair Weiss,et al. Segmentation using eigenvectors: a unifying view , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.
[18] M. Maggioni,et al. GEOMETRIC DIFFUSIONS AS A TOOL FOR HARMONIC ANALYSIS AND STRUCTURE DEFINITION OF DATA PART I: DIFFUSION MAPS , 2005 .
[19] N. Alon,et al. On the concentration of eigenvalues of random symmetric matrices , 2000, math-ph/0009032.
[20] M. Berger. A Panoramic View of Riemannian Geometry , 2003 .
[21] N. Linial,et al. Expander Graphs and their Applications , 2006 .
[22] János Komlós,et al. The eigenvalues of random symmetric matrices , 1981, Comb..
[23] V. Vu. Random Discrete Matrices , 2006 .
[24] Kevin P. Costello,et al. Random symmetric matrices are almost surely nonsingular , 2005, math/0505156.
[25] Ann B. Lee,et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: multiscale methods. , 2005, Proceedings of the National Academy of Sciences of the United States of America.