Computing distance distributions of spherical designs
暂无分享,去创建一个
[1] R. Askey. Orthogonal Polynomials and Special Functions , 1975 .
[2] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[3] E. Bannai. Algebraic, Extremal and Metric Combinatorics, 1986: On Extremal Finite Sets in the Sphere and Other Metric Spaces , 1988 .
[4] Modelling supercoiled DNA knots and catenanes by means of a new regular isotopy invariant , 1991 .
[5] J. Seidel,et al. BOUNDS FOR SYSTEMS OF LINES, AND JACOBI POLYNOMIALS , 1975 .
[6] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[7] E. Bannai,et al. Algebraic Combinatorics I: Association Schemes , 1984 .
[8] Eiichi Bannai,et al. Uniqueness of Certain Spherical Codes , 1981, Canadian Journal of Mathematics.
[9] V. Levenshtein. Designs as maximum codes in polynomial metric spaces , 1992 .
[10] Eiichi Bannai,et al. Tight spherical designs, I , 1979 .
[11] J. Seidel,et al. Spherical codes and designs , 1977 .