Semi-global observer-based nonnegative edge-consensus of linear discrete-time multi-agent systems with nonnegative constraint and input saturation

Abstract This paper studies the observer-based edge-consensus of linear discrete-time multi-agent systems on undirected networks, in which the state of each edge is subject to nonnegative constraint, and the input of each edge is limited by actuator saturation. By utilizing the MARE-based low-gain output feedback method and the positive system theory, the observer-based edge interacting algorithm is developed to guarantee the nonnegative edge-consensus. Meanwhile, the sufficient conditions are found to guarantee the nonnegative edge-states and the bounded control input. In addition, the edge-consensus protocol and the sufficient conditions do not use the global information of communication network, which are only dependent on the edge number and the vertex number of communication network. Finally, a case is developed to verify the effectiveness and feasibility of the theoretical result.

[1]  James Lam,et al.  Semi-Global Leader-Following Consensus of Linear Multi-Agent Systems With Input Saturation via Low Gain Feedback , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Guanrong Chen,et al.  Reaching Non-Negative Edge Consensus of Networked Dynamical Systems , 2018, IEEE Transactions on Cybernetics.

[3]  Rathinasamy Sakthivel,et al.  Leader-following exponential consensus of input saturated stochastic multi-agent systems with Markov jump parameters , 2018, Neurocomputing.

[4]  James Lam,et al.  Semiglobal Observer-Based Leader-Following Consensus With Input Saturation , 2014, IEEE Transactions on Industrial Electronics.

[5]  Xiangdong Liu,et al.  Consensus of linear multi-agent systems with reduced-order observer-based protocols , 2011, Syst. Control. Lett..

[6]  Bo Liu,et al.  Asynchronous consensus of second-order multi-agent systems with impulsive control and measurement time-delays , 2018, Neurocomputing.

[7]  Yang-Yu Liu Theoretical progress and practical challenges in controlling complex networks , 2014 .

[8]  Housheng Su,et al.  Semi-global edge-consensus of linear discrete-time multi-agent systems with positive constraint and input saturation , 2019 .

[9]  Yu-Ping Tian,et al.  Consensus of Multi-Agent Systems With Diverse Input and Communication Delays , 2008, IEEE Transactions on Automatic Control.

[10]  Housheng Su,et al.  Observer-Based Consensus for Positive Multiagent Systems With Directed Topology and Nonlinear Control Input , 2019, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[11]  Jun Huang,et al.  On pinning group consensus for heterogeneous multi-agent system with input saturation , 2016, Neurocomputing.

[12]  Bo Liu,et al.  Group controllability of two-time-scale multi-agent networks , 2018, J. Frankl. Inst..

[13]  Housheng Su,et al.  Robust semiglobal swarm tracking of coupled harmonic oscillators with input saturation and external disturbance , 2018 .

[14]  James Lam,et al.  Positive Edge-Consensus for Nodal Networks via Output Feedback , 2019, IEEE Transactions on Automatic Control.

[15]  Wei Xing Zheng,et al.  Optimal Synchronization Control of Multiagent Systems With Input Saturation via Off-Policy Reinforcement Learning , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[16]  Xin Wang,et al.  Self-triggered leader-following consensus of multi-agent systems with input time delay , 2019, Neurocomputing.

[17]  Bo Liu,et al.  Second-order controllability of two-time-scale multi-agent systems , 2019, Appl. Math. Comput..

[18]  Zhigang Zeng,et al.  Second-Order Consensus for Multiagent Systems via Intermittent Sampled Position Data Control , 2018, IEEE Transactions on Cybernetics.

[19]  Lei Wang,et al.  Semi-global output consensus of discrete-time multi-agent systems with input saturation and external disturbances. , 2017, ISA transactions.

[20]  Wei Xing Zheng,et al.  On the Bipartite Consensus for Generic Linear Multiagent Systems With Input Saturation , 2017, IEEE Transactions on Cybernetics.

[21]  Guanrong Chen,et al.  Stabilizing Solution and Parameter Dependence of Modified Algebraic Riccati Equation With Application to Discrete-Time Network Synchronization , 2016, IEEE Transactions on Automatic Control.

[22]  Zhengtao Ding,et al.  Consensus Disturbance Rejection With Disturbance Observers , 2015, IEEE Transactions on Industrial Electronics.

[23]  R. Z. Norman,et al.  Some properties of line digraphs , 1960 .

[24]  Xia Chen,et al.  Observer-Based Discrete-Time Nonnegative Edge Synchronization of Networked Systems , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[25]  Housheng Su,et al.  Discrete-Time Positive Edge-Consensus for Undirected and Directed Nodal Networks , 2018, IEEE Transactions on Circuits and Systems II: Express Briefs.

[26]  Xiao Fan Wang,et al.  Nonnegative Edge Quasi-Consensus of Networked Dynamical Systems , 2017, IEEE Transactions on Circuits and Systems II: Express Briefs.

[27]  Gang Feng,et al.  Observer-Based Output Feedback Event-Triggered Control for Consensus of Multi-Agent Systems , 2014, IEEE Transactions on Industrial Electronics.

[28]  Housheng Su,et al.  Observer-Based Robust Coordinated Control of Multiagent Systems With Input Saturation , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[29]  Xia Chen,et al.  Positive Edge Consensus of Complex Networks , 2018, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[30]  A. Pentland The new science of building great teams , 2012 .

[31]  Bo Liu,et al.  Group controllability of two-time-scale discrete-time multi-agent systems , 2020, J. Frankl. Inst..

[32]  Zhigang Zeng,et al.  Controllability of Two-Time-Scale Discrete-Time Multiagent Systems , 2020, IEEE Transactions on Cybernetics.

[33]  Housheng Su,et al.  Semi-Global Output Consensus for Discrete-Time Switching Networked Systems Subject to Input Saturation and External Disturbances , 2019, IEEE Transactions on Cybernetics.

[34]  Qing Zhang,et al.  Consensus of a heterogeneous multi-agent system with input saturation , 2015, Neurocomputing.

[35]  Housheng Su,et al.  Event-triggered consensus tracking for fractional-order multi-agent systems with general linear models , 2018, Neurocomputing.