Double insertion of CO2 into an Al-Te multiple bond.

We report the [Al(NONDipp)(Te)(THF)]- anion containing a terminal aluminium telluride bond. DFT calculations confirm appreciable Al-Te multiple bond character and reaction with CO2 proceeds via a double insertion to afford the previously unknown tellurodicarbonate ligand.

[1]  Rei Kinjo,et al.  Fragmentation of White Phosphorus by a Cyclic (Alkyl)(Amino)Alumanyl Anion , 2020 .

[2]  Catherine Weetman,et al.  Main Group Multiple Bonds for Bond Activations and Catalysis , 2020, Chemistry.

[3]  M. Yamashita,et al.  A meta-Selective C-H Alumination of Mono-Substituted Benzene by Using An Alkyl-Substituted Al Anion through Hydride-Eliminating SNAr Reaction. , 2020, Angewandte Chemie.

[4]  S. Aldridge,et al.  Arene C−H Activation at Aluminium(I): meta Selectivity Driven by the Electronics of SNAr Chemistry , 2020, Angewandte Chemie.

[5]  S. Aldridge,et al.  Acid–Base Free Main Group Carbonyl Analogues , 2020, Angewandte Chemie.

[6]  C. Carmalt,et al.  Recent advances in low oxidation state aluminium chemistry , 2020, Chemical science.

[7]  S. Aldridge,et al.  The Aluminyl Anion: A New Generation of Aluminium Nucleophile. , 2020, Angewandte Chemie.

[8]  S. Harder,et al.  Boosting Low‐Valent Aluminum(I) Reactivity with a Potassium Reagent , 2020, Angewandte Chemie.

[9]  Rei Kinjo,et al.  Construction of σ-aromatic AlB2 ring via A Borane Coupling with A Dicoordinate Cyclic (Alkyl)(Amino)Aluminyl Anion. , 2020, Journal of the American Chemical Society.

[10]  S. Inoue,et al.  Dialumenes – aryl vs. silyl stabilisation for small molecule activation and catalysis† , 2020, Chemical science.

[11]  M. Yamashita,et al.  An Alumanylyttrium Complex with an Absorption due to a Transition from the Al-Y Bond to an Unoccupied d-Orbital. , 2020, Chemistry.

[12]  M. P. Coles,et al.  Synthesis and reactivity of a terminal aluminium-imide bond. , 2020, Chemical communications.

[13]  M. Yamashita,et al.  Cycloaddition of Dialkylalumanyl Anion toward Unsaturated Hydrocarbons in (1+2) and (1+4) Modes. , 2019, Chemistry.

[14]  M. Hill,et al.  A Stable Calcium Alumanyl , 2019, Angewandte Chemie.

[15]  M. P. Coles,et al.  Aluminium-Mediated Carbon Dioxide Reduction by an Isolated Monoalumoxane Anion. , 2019, Angewandte Chemie.

[16]  M. Yamashita,et al.  An alkyl-substituted aluminium anion with strong basicity and nucleophilicity , 2019, Nature Chemistry.

[17]  S. Aldridge,et al.  Trapping and Reactivity of a Molecular Aluminium Oxide Ion. , 2019, Angewandte Chemie.

[18]  M. P. Coles,et al.  Isoelectronic, aluminium analogues of carbonyls and dioxiranes. , 2019, Angewandte Chemie.

[19]  Rebecca L. Melen Frontiers in molecular p-block chemistry: From structure to reactivity , 2019, Science.

[20]  S. Aldridge,et al.  A nucleophilic gold complex , 2019, Nature Chemistry.

[21]  M. Lein,et al.  Reduction vs. Addition: The Reaction of an Aluminyl Anion with 1,3,5,7-Cyclooctatetraene. , 2018, Angewandte Chemie.

[22]  S. Inoue,et al.  Experimental Realisation of Elusive Multiple-Bonded Aluminium Compounds: A New Horizon in Aluminium Chemistry. , 2018, Angewandte Chemie.

[23]  S. Inoue,et al.  The Road Travelled: After Main‐Group Elements as Transition Metals , 2018, ChemCatChem.

[24]  Trevor W. Hayton,et al.  Synthesis and reactivity of a nickel(ii) thioperoxide complex: demonstration of sulfide-mediated N2O reduction , 2018, Chemical science.

[25]  S. Aldridge,et al.  Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion , 2018, Nature.

[26]  S. Inoue,et al.  A Stable Neutral Compound with an Aluminum-Aluminum Double Bond. , 2017, Journal of the American Chemical Society.

[27]  G. Nikonov,et al.  Oxidative Cleavage of C=S and P=S Bonds at an AlI Center: Preparation of Terminally Bound Aluminum Sulfides. , 2016, Angewandte Chemie.

[28]  S. Inoue,et al.  Advances in the development of complexes that contain a group 13 element chalcogen multiple bond. , 2016, Dalton transactions.

[29]  S. Inoue,et al.  A monotopic aluminum telluride with an Al=Te double bond stabilized by N-heterocyclic carbenes , 2015, Nature Communications.

[30]  Ralf Tonner,et al.  New bonding modes of carbon and heavier group 14 atoms Si-Pb. , 2014, Chemical Society reviews.

[31]  S. Dehnen,et al.  Syntheses, Structures, and Electronic Properties of a New Series of Tellurides of the Type [Sequestered Cation]2(Tex) (x = 1–4) , 2013 .

[32]  Erli Lu,et al.  Reactivity of a scandium terminal imido complex towards unsaturated substrates. , 2011, Angewandte Chemie.

[33]  P. Power,et al.  Nature of bonding in group 13 dimetallenes: a delicate balance between singlet diradical character and closed shell interactions. , 2010, Inorganic chemistry.

[34]  P. Power,et al.  Pi-bonding and the lone pair effect in multiple bonds involving heavier main group elements: developments in the new millennium. , 2010, Chemical reviews.

[35]  P. Power Main-group elements as transition metals , 2010, Nature.

[36]  Pekka Pyykkö,et al.  Molecular double-bond covalent radii for elements Li-E112. , 2009, Chemistry.

[37]  E. Clot,et al.  Reactions of cyclopentadienyl-amidinate titanium imido compounds with CO2: cycloaddition-extrusion vs. cycloaddition-insertion. , 2009, Dalton transactions.

[38]  P. Power,et al.  Multiple bonding in heavier element compounds stabilized by bulky terphenyl ligands. , 2007, Inorganic chemistry.

[39]  R. Herbst‐Irmer,et al.  Phosphane‐Catalyzed Reactions of LAlH2 with Elemental Chalcogens; Preparation of [LAl(μ‐E)2AlL] [E = S, Se, Te, L = HC{C(Me)N(Ar)}2, Ar = 2,6‐iPr2C6H3] , 2004 .

[40]  D. Stalke,et al.  Formation and characterization of the first monoalumoxane, LAlO.B(C6F5)3. , 2002, Angewandte Chemie.

[41]  H. Roesky,et al.  Syntheses and structures of the arylaluminum chalcogenides (ArAlE)2 (Ar = 2-(NEt2CH2)-6-MeC6H3, E = Se; Ar = 2,6-(NEt2CH2)2C6H3, E = Se, Te). , 2000, Inorganic chemistry.

[42]  P. Power π-Bonding and the Lone Pair Effect in Multiple Bonds between Heavier Main Group Elements , 1999 .

[43]  H. Roesky,et al.  Synthesis of Organoaluminum Chalcogenides [RAl(μ-E)]2 (R = N(SiMe3)C(Ph)C(SiMe3)2, E = Se, Te) from Aluminum Dihydride [RAlH(μ-H)]2† , 1999 .

[44]  A. Barron,et al.  TERT-AMYL COMPOUNDS OF ALUMINUM AND GALLIUM : HALIDES, HYDROXIDES, AND CHALCOGENIDES , 1996 .

[45]  U. Schütz,et al.  Monomeres [(Me3Si)2CH]2Al-Te-Al[CH(SiMe3)2]2 mit gewinkelter Al-Te-Al-Gruppe / Monomeric [(Me3Si)2CH]2Al-Te-Al[CH(SiMe3)2] 2 with a Bent Al-Te-Al Group , 1994 .

[46]  Maryvonne L. Martin,et al.  Determination of the 125Te13C coupling constants in 2-substituted tellurophenes , 1982 .

[47]  A. Allred,et al.  Electronegativity values from thermochemical data , 1961 .

[48]  A. Cowley,et al.  Novel double substrate insertion versus isocyanate extrusion in reactions of imidotitanium complexes with CO2: critical dependence on imido N-substituents , 2001 .