Meron Spin Textures in Momentum Space.

We show that a momentum-space meron spin texture for electromagnetic fields in free space can be generated by controlling the interaction of light with a photonic crystal slab having a nonzero Berry curvature. These spin textures in momentum space have not been previously noted either in electronic or photonic systems. Breaking the inversion symmetry of a honeycomb photonic crystal gaps out the Dirac cones at the corners of Brillouin zone. The pseudospin textures of photonic bands near the gaps exhibit a meron or antimeron. Unlike the electronic systems, the pseudospin texture of the photonic modes manifests directly in the spin (polarization) texture of the leakage radiation, as the Dirac points can be above the light line. Such a spin texture provides a direct approach to visualize the local Berry curvature. Our work highlights the significant opportunities of using photonic structures for the exploration of topological spin textures, with potential applications towards topologically robust ways to manipulate polarizations and other modal characteristics of light.

[1]  S. Fan,et al.  Arbitrary Polarization Conversion with a Photonic Crystal Slab , 2019, Advanced Optical Materials.

[2]  Y. Tokura,et al.  Transformation between meron and skyrmion topological spin textures in a chiral magnet , 2018, Nature.

[3]  Z. Jacob,et al.  Photonic Dirac Monopole: Spin-1 Quantization , 2018, 1806.09879.

[4]  A. Alú,et al.  Experimental observation of a polarization vortex at an optical bound state in the continuum , 2018, Nature Photonics.

[5]  Alexey A. Kovalev,et al.  Skyrmions and Antiskyrmions in Quasi-Two-Dimensional Magnets , 2018, Front. Phys..

[6]  G. Bartal,et al.  Optical skyrmion lattice in evanescent electromagnetic fields , 2018, Science.

[7]  J. Zi,et al.  Observing half and integer polarization vortices at band degeneracies , 2017, 1712.09296.

[8]  J. Zi,et al.  Observation of Polarization Vortices in Momentum Space. , 2017, Physical review letters.

[9]  Igor Muševič,et al.  Spontaneous formation and dynamics of half-skyrmions in a chiral liquid-crystal film , 2017, Nature Physics.

[10]  Jian-Wen Dong,et al.  Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation , 2017 .

[11]  A. Fert,et al.  Magnetic skyrmions: advances in physics and potential applications , 2017, 1712.07236.

[12]  C. Felser,et al.  Magnetic antiskyrmions above room temperature in tetragonal Heusler materials , 2017, Nature.

[13]  Yuan Wang,et al.  Valley photonic crystals for control of spin and topology. , 2017, Nature materials.

[14]  U. Peschel,et al.  Experimental measurement of the Berry curvature from anomalous transport , 2016, Nature Physics.

[15]  Jianwen Dong,et al.  Valley-contrasting orbital angular momentum in photonic valley crystals , 2016, 1606.08717.

[16]  Gennady Shvets,et al.  All-Si valley-Hall photonic topological insulator , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[17]  Vincenzo Savona,et al.  Automated optimization of photonic crystal slab cavities , 2014, Scientific Reports.

[18]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[19]  Shanhui Fan,et al.  S4 : A free electromagnetic solver for layered periodic structures , 2012, Comput. Phys. Commun..

[20]  Gennady Shvets,et al.  Photonic topological insulators. , 2012, Nature materials.

[21]  E. Wang,et al.  MoS_2 as an ideal material for valleytronics: valley-selective circular dichroism and valley Hall effect , 2011, 1112.4013.

[22]  Jun-ichi Fukuda,et al.  Quasi-two-dimensional Skyrmion lattices in a chiral nematic liquid crystal. , 2011, Nature communications.

[23]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[24]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[25]  Wang Yao,et al.  Valley-contrasting physics in graphene: magnetic moment and topological transport. , 2007, Physical review letters.

[26]  D. Gerace,et al.  Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method , 2006, 0706.0395.

[27]  C. Pfleiderer,et al.  Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.

[28]  Shanhui Fan,et al.  Analysis of guided resonances in photonic crystal slabs , 2002 .

[29]  H. Stoof,et al.  Skyrmions in a ferromagnetic Bose–Einstein condensate , 2000, Nature.

[30]  West,et al.  Optically pumped NMR evidence for finite-size skyrmions in GaAs quantum wells near Landau level filling nu =1. , 1995, Physical review letters.

[31]  D. Falkoff,et al.  On the Stokes parameters for polarized radiation. , 1951 .

[32]  U. Fano Remarks on the Classical and Quantum-Mechanical Treatment of Partial Polarization* , 1949 .

[33]  B. Blank,et al.  The Road to Reality : A Complete Guide to the Laws of the Universe , 2006 .

[34]  Roger Penrose,et al.  A complete guide to the laws of the universe , 2005 .