Filtering unification and most general unifiers in modal logic

We characterize (both from a syntactic and an algebraic point of view) the normal K 4-logics for which unification is filtering. We also give a sufficient semantic criterion for existence of most general unifiers, covering natural extensions of K 4.2 + (i.e., of the modal system obtained from K 4 by adding to it, as a further axiom schemata, the modal translation of the weak excluded middle principle).

[1]  L. L. Maksimova,et al.  A classification of modal logics , 1979 .

[2]  Silvio Ghilardi,et al.  A Resolution/Tableaux Algorithm for Projective Approximations in IPC , 2002, Log. J. IGPL.

[3]  R. Goldblatt Metamathematics of modal logic , 1974, Bulletin of the Australian Mathematical Society.

[4]  Giovanni Sambin,et al.  Topology and duality in modal logic , 1988, Ann. Pure Appl. Log..

[5]  Werner Nutt,et al.  Combination problems for commutative/monoidal theories or how algebra can help in equational unification , 2005, Applicable Algebra in Engineering, Communication and Computing.

[6]  Silvio Ghilardi,et al.  Unification in intuitionistic logic , 1999, Journal of Symbolic Logic.

[7]  Silvio Ghilardi,et al.  Unification Through Projectivity , 1997, J. Log. Comput..

[8]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[9]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[10]  Paliath Narendran,et al.  Unification Theory , 2001, Handbook of Automated Reasoning.

[11]  Werner Nutt,et al.  Unification in Monoidal Theories , 1990, CADE.

[12]  Rosalie Iemhoff Towards a Proof System for Admissibility , 2003, CSL.

[13]  Silvio Ghilardi,et al.  Unification, finite duality and projectivity in varieties of Heyting algebras , 2004, Ann. Pure Appl. Log..

[14]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[15]  Franz Baader,et al.  Unification theory , 1986, Decis. Support Syst..

[16]  Paliath Narendran,et al.  Unification of Concept Terms in Description Logics , 2001, Description Logics.

[17]  Albert Rubio,et al.  Paramodulation-Based Theorem Proving , 2001, Handbook of Automated Reasoning.

[18]  Franz Baader,et al.  Unification in Commutative Theories , 1989, J. Symb. Comput..

[19]  Silvio Ghilardi,et al.  Best Solving Modal Equations , 2000, Ann. Pure Appl. Log..

[20]  William McCune,et al.  Solution of the Robbins Problem , 1997, Journal of Automated Reasoning.