Visible-light-induced formal [3+2] cycloaddition for pyrrole synthesis under metal-free conditions.

A photocatalytic formal [3+2] cycloaddition of 2H-azirines with alkynes has been achieved under irradiation by visible light in the presence of organic dye photocatalysts. This transformation provides efficient access to highly functionalized pyrroles in good yields and has been applied to the synthesis of drug analogues. A primary trial of photocascade catalysis merging energy transfer and redox neutral reactions was shown to be successful.

[1]  B. Arndtsen,et al.  Palladium-catalyzed multicomponent coupling of alkynes, imines, and acid chlorides: a direct and modular approach to pyrrole synthesis. , 2004, Journal of the American Chemical Society.

[2]  Hyejin Kim,et al.  Visible-light-induced photocatalytic reductive transformations of organohalides. , 2012, Angewandte Chemie.

[3]  J. Grimshaw,et al.  Poly(pyrrole) as a support for electrocatalytic materials , 1991 .

[4]  Simon J. Higgins,et al.  Conjugated polymers incorporating pendant functional groups—synthesis and characterisation , 1997 .

[5]  W. Xiao,et al.  Photoredoxkatalyse mit sichtbarem Licht , 2012 .

[6]  W. Xiao,et al.  Visible light-induced intramolecular cyclization reactions of diamines: a new strategy to construct tetrahydroimidazoles. , 2011, Chemical communications.

[7]  B. Arndtsen,et al.  Horner-Wadsworth-Emmons reagents as azomethine ylide analogues: pyrrole synthesis via (3 + 2) cycloaddition. , 2010, Organic letters.

[8]  Cheol‐Min Park,et al.  Synthesis of pyridines by carbenoid-mediated ring opening of 2H-azirines. , 2013, Angewandte Chemie.

[9]  Q. Wang,et al.  Visible Light-Induced Aerobic Oxyamidation of Indoles: A Photocatalytic Strategy for the Preparation of Tetrahydro-5H-indolo[2,3-b]quinolinols , 2013 .

[10]  Xiuling Cui,et al.  "One pot" regiospecific synthesis of polysubstituted pyrroles from benzylamines and ynones under metal free conditions. , 2013, Chemical communications.

[11]  David A. Nicewicz,et al.  Synthesis of cyclobutane lignans via an organic single electron oxidant-electron relay system. , 2013, Chemical science.

[12]  J. Mattay,et al.  A New Synthesis for Imidazolo‐ and Pyrrolophanes by [3+2]Cycloaddition with Azaallenyl Radical Cations , 1992 .

[13]  N. Zheng,et al.  Fe(II)-catalyzed amination of aromatic C-H bonds via ring opening of 2H-azirines: synthesis of 2,3-disubstituted indoles. , 2010, Organic letters.

[14]  Tehshik P Yoon,et al.  Visible-light sensitization of vinyl azides by transition-metal photocatalysis. , 2014, Angewandte Chemie.

[15]  C. Walsh,et al.  Biological formation of pyrroles: nature's logic and enzymatic machinery. , 2006, Natural product reports.

[16]  W. Xiao,et al.  Visible-light-induced C-S bond activation: facile access to 1,4-diketones from β-ketosulfones. , 2014, Chemistry.

[17]  Wen-Jing Xiao,et al.  Visible-light photoredox catalysis. , 2012, Angewandte Chemie.

[18]  B. König,et al.  Die photokatalytische Meerwein‐Arylierung: eine klassische Aryldiazoniumsalz‐Reaktion in neuem Licht , 2013 .

[19]  A. Saito,et al.  Synthesis of pyrroles by gold(I)-catalyzed amino-claisen rearrangement of N-propargyl enaminone derivatives. , 2010, Organic letters.

[20]  R. Kempe,et al.  A sustainable catalytic pyrrole synthesis , 2013, Nature Chemistry.

[21]  F. Glorius,et al.  Pyrrole synthesis via allylic sp3 C-H activation of enamines followed by intermolecular coupling with unactivated alkynes. , 2010, Journal of the American Chemical Society.

[22]  K. Ohkubo,et al.  Simultaneous production of p-tolualdehyde and hydrogen peroxide in photocatalytic oxygenation of p-xylene and reduction of oxygen with 9-mesityl-10-methylacridinium ion derivatives. , 2010, Chemical communications.

[23]  Lei Shi,et al.  Photoredox functionalization of C-H bonds adjacent to a nitrogen atom. , 2012, Chemical Society reviews.

[24]  Wei-Man Tian,et al.  The Neber route to substituted indoles. , 2006, Journal of the American Chemical Society.

[25]  F. Toste,et al.  Gold(I)-catalyzed intramolecular acetylenic Schmidt reaction. , 2005, Journal of the American Chemical Society.

[26]  Durga Prasad Hari,et al.  The photocatalyzed Meerwein arylation: classic reaction of aryl diazonium salts in a new light. , 2013, Angewandte Chemie.

[27]  H. Neumann,et al.  General and regioselective synthesis of pyrroles via ruthenium-catalyzed multicomponent reactions. , 2013, Journal of the American Chemical Society.

[28]  S. Rault,et al.  Synthesis and biological evaluation of novel pyrrolopyrrolizinones as anticancer agents. , 2006, Bioorganic & medicinal chemistry.

[29]  A. Bergamini,et al.  Arylthiopyrrole (AThP) Derivatives as Non‐Nucleoside HIV‐1 Reverse Transcriptase Inhibitors: Synthesis, Structure–Activity Relationships, and Docking Studies (Part 2) , 2006, ChemMedChem.

[30]  David A. Nicewicz,et al.  Direct catalytic anti-Markovnikov addition of carboxylic acids to alkenes. , 2013, Journal of the American Chemical Society.

[31]  T. Poisson,et al.  Visible light mediated azomethine ylide formation-photoredox catalyzed [3+2] cycloadditions. , 2011, Chemical communications.

[32]  David A. Nicewicz,et al.  Anti-Markovnikov hydroamination of alkenes catalyzed by an organic photoredox system. , 2013, Journal of the American Chemical Society.

[33]  T. Yoon,et al.  [3+2] cycloadditions of aryl cyclopropyl ketones by visible light photocatalysis. , 2011, Journal of the American Chemical Society.

[34]  J. Mattay,et al.  Photoinduced electron transfer (PET) in organic synthesis. [3 + 2]-type cycloaddition, cyclization and CC bond cleavage reactions , 1994 .

[35]  W. Xiao,et al.  Visible-light-induced oxidation/[3+2] cycloaddition/oxidative aromatization sequence: a photocatalytic strategy to construct pyrrolo[2,1-a]isoquinolines. , 2011, Angewandte Chemie.

[36]  David Y. Wang,et al.  Enantioselective Photoredox Catalysis Enabled by Proton-Coupled Electron Transfer , 2016 .

[37]  M. Lautens,et al.  Exploiting the chemistry of strained rings: synthesis of indoles via domino reaction of aryl iodides with 2H-azirines. , 2010, Organic letters.

[38]  D. MacMillan,et al.  Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. , 2013, Chemical reviews.

[39]  John D. Nguyen,et al.  Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions , 2012, Nature Chemistry.

[40]  W. Xiao,et al.  Visible-Light-Driven Photoredox Catalysis in the Construction of Carbocyclic and Heterocyclic Ring Systems , 2013 .

[41]  Lan Bui,et al.  Oxygen switch in visible-light photoredox catalysis: radical additions and cyclizations and unexpected C-C-bond cleavage reactions. , 2013, Journal of the American Chemical Society.

[42]  W. Xiao,et al.  Room-Temperature Synthesis of Isoquino[2,1-a][3,1]oxazine and Isoquino[2,1-a]pyrimidine Derivatives via Visible Light Photoredox Catalysis. , 2012 .

[43]  Shouyun Yu,et al.  Synthesis of 6-alkylated phenanthridine derivatives using photoredox neutral somophilic isocyanide insertion. , 2013, Angewandte Chemie.

[44]  Guo-Bo Deng,et al.  Tandem cyclizations of 1,6-enynes with arylsulfonyl chlorides by using visible-light photoredox catalysis. , 2013, Angewandte Chemie.

[45]  B. Trofimov,et al.  C-vinylpyrroles as pyrrole building blocks. , 2004, Chemical reviews.

[46]  C. Yang,et al.  Reactivity insight into reductive coupling and aldol cyclization of chalcones by visible light photocatalysis. , 2012, The Journal of organic chemistry.

[47]  Xiaonian Li,et al.  Applications of Visible Light Photoredox Catalysis in Organic Synthesis , 2013 .

[48]  Mark T Hamann,et al.  Lamellarins and related pyrrole-derived alkaloids from marine organisms. , 2008, Chemical reviews.

[49]  Corey R J Stephenson,et al.  Visible light photoredox catalysis: applications in organic synthesis. , 2011, Chemical Society reviews.

[50]  B. Arndtsen,et al.  Palladium catalyzed synthesis of münchnones from alpha-amidoethers: a mild route to pyrroles. , 2008, Angewandte Chemie.

[51]  Tao Xu,et al.  Silver-catalyzed intramolecular aminofluorination of activated allenes. , 2011, Angewandte Chemie.

[52]  David A. Nicewicz,et al.  Catalytic hydrotrifluoromethylation of styrenes and unactivated aliphatic alkenes via an organic photoredox system , 2013 .

[53]  J. Mattay,et al.  3+2 CYCLOADDITIONS WITH AZIRINE RADICAL CATIONS : A NEW SYNTHESIS OF N-SUBSTITUTED IMIDAZOLES , 1991 .

[54]  Mingzhao Zhu,et al.  Intermolecular [3+2] cycloaddition of cyclopropylamines with olefins by visible-light photocatalysis. , 2012, Angewandte Chemie.

[55]  Xiang-gao Meng,et al.  Visible light induced intermolecular [2+2]-cycloaddition reactions of 3-ylideneoxindoles through energy transfer pathway , 2012 .

[56]  Cheol‐Min Park,et al.  Expedient synthesis of highly substituted pyrroles via tandem rearrangement of α-diazo oxime ethers. , 2012, Journal of the American Chemical Society.

[57]  N. Zheng,et al.  A visible-light-mediated oxidative C-N bond formation/aromatization cascade: photocatalytic preparation of N-arylindoles. , 2012, Angewandte Chemie.

[58]  J. Mattay,et al.  RADICAL-CATION [3+2] CYCLOADDITIONS OF 2H-AZIRINES - MECHANISTIC STUDIES CONCERNING THE INTERMEDIATE RADICAL-CATION , 1993 .

[59]  F. Teplý Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots , 2011 .

[60]  Huanfeng Jiang,et al.  One-pot silver-catalyzed and PIDa-mediated sequential reactions: synthesis of polysubstituted pyrroles directly from alkynoates and amines. , 2010, Organic letters.

[61]  David A. Nicewicz,et al.  Synthesis of highly substituted tetrahydrofurans by catalytic polar-radical-crossover cycloadditions of alkenes and alkenols. , 2013, Angewandte Chemie.

[62]  Pixu Li,et al.  Aerobic visible-light photoredox radical C-H functionalization: catalytic synthesis of 2-substituted benzothiazoles. , 2012, Organic letters.

[63]  Frank Glorius,et al.  Combining gold and photoredox catalysis: visible light-mediated oxy- and aminoarylation of alkenes. , 2013, Journal of the American Chemical Society.

[64]  F. Müller,et al.  [3 + 2]-Cycloadditionen mit Azirin-Radikalkationen : Eine neue Synthese N-substituierter Imidazole , 1991 .

[65]  David A. Nicewicz,et al.  Direct catalytic anti-markovnikov hydroetherification of alkenols. , 2012, Journal of the American Chemical Society.

[66]  F. Müller,et al.  Darstellung von Imidazolo‐ und Pyrrolophanen durch [3+2]‐Cycloadditionen mit Azaallenyl‐Radikalkationen , 1992 .

[67]  Synthesis of pyrroles by click reaction: silver-catalyzed cycloaddition of terminal alkynes with isocyanides. , 2013, Angewandte Chemie.

[68]  K. Ohkubo,et al.  Electron-transfer state of 9-mesityl-10-methylacridinium ion with a much longer lifetime and higher energy than that of the natural photosynthetic reaction center. , 2004, Journal of the American Chemical Society.

[69]  J. Xie,et al.  A visible-light-promoted aerobic C–H/C–N cleavage cascade to isoxazolidine skeletons , 2013 .

[70]  M. A. Ischay,et al.  Visible light photocatalysis as a greener approach to photochemical synthesis. , 2010, Nature chemistry.

[71]  Lei Zhou,et al.  Visible-light-induced radical cyclization of trifluoroacetimidoyl chlorides with alkynes: catalytic synthesis of 2-trifluoromethyl quinolines. , 2013, Chemistry.

[72]  T. Yoon,et al.  Visible light photocatalysis of [2+2] styrene cycloadditions by energy transfer. , 2012, Angewandte Chemie.

[73]  C J Blankley,et al.  Inhibitors of cholesterol biosynthesis. 3. Tetrahydro-4-hydroxy-6-[2-(1H-pyrrol-1-yl)ethyl]-2H-pyran-2-one inhibitors of HMG-CoA reductase. 2. Effects of introducing substituents at positions three and four of the pyrrole nucleus. , 1991, Journal of medicinal chemistry.

[74]  A. Lei,et al.  Synthetic applications of photoredox catalysis with visible light. , 2013, Organic & biomolecular chemistry.