Satisfiability Modulo Theories
暂无分享,去创建一个
Cesare Tinelli | Sanjit A. Seshia | Roberto Sebastiani | Clark W. Barrett | C. Tinelli | S. Seshia | R. Sebastiani
[1] Calogero G. Zarba,et al. Combining Data Structures with Nonstably Infinite Theories Using Many-Sorted Logic , 2005, FroCoS.
[2] Bruno Dutertre,et al. A Fast Linear-Arithmetic Solver for DPLL(T) , 2006, CAV.
[3] L. D. Moura. Lemmas on Demand for Satisfiability Solvers , 2002 .
[4] Albert Oliveras,et al. Fast congruence closure and extensions , 2007, Inf. Comput..
[5] Cesare Tinelli,et al. A New Correctness Proof of the {Nelson-Oppen} Combination Procedure , 1996, FroCoS.
[6] Mark Lillibridge,et al. Extended static checking for Java , 2002, PLDI '02.
[7] Donald W. Loveland,et al. A machine program for theorem-proving , 2011, CACM.
[8] Albert Oliveras,et al. DPLL(T) with Exhaustive Theory Propagation and Its Application to Difference Logic , 2005, CAV.
[9] Cesare Tinelli,et al. Scaling Up the Formal Verification of Lustre Programs with SMT-Based Techniques , 2008, 2008 Formal Methods in Computer-Aided Design.
[10] Nikolai Tillmann,et al. Pex-White Box Test Generation for .NET , 2008, TAP.
[11] Chao Wang,et al. Deciding Separation Logic Formulae by SAT and Incremental Negative Cycle Elimination , 2005, LPAR.
[12] Aart Middeldorp,et al. Satisfiability of Non-linear (Ir)rational Arithmetic , 2010, LPAR.
[13] Cesare Tinelli. A DPLL-Based Calculus for Ground Satisfiability Modulo Theories , 2002, JELIA.
[14] Calogero G. Zarba,et al. Combining Nonstably Infinite Theories , 2005, Journal of Automated Reasoning.
[15] Clark W. Barrett,et al. Polite Theories Revisited , 2010, LPAR.
[16] Sanjit A. Seshia,et al. A hybrid SAT-based decision procedure for separation logic with uninterpreted functions , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).
[17] Christophe Ringeissen,et al. Cooperation of Decision Procedures for the Satisfiability Problem , 1996, FroCoS.
[18] Cesare Tinelli,et al. Solving SAT and SAT Modulo Theories: From an abstract Davis--Putnam--Logemann--Loveland procedure to DPLL(T) , 2006, JACM.
[19] Greg Nelson,et al. Simplification by Cooperating Decision Procedures , 1979, TOPL.
[20] Hilary Putnam,et al. A Computing Procedure for Quantification Theory , 1960, JACM.
[21] Albert Oliveras,et al. SMT Techniques for Fast Predicate Abstraction , 2006, CAV.
[22] Amir Pnueli,et al. Deciding Equality Formulas by Small Domains Instantiations , 1999, CAV.
[23] David L. Dill,et al. A decision procedure for an extensional theory of arrays , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.
[24] Ofer Strichman,et al. Deciding Separation Formulas with SAT , 2002, CAV.
[25] Greg Nelson,et al. Fast Decision Procedures Based on Congruence Closure , 1980, JACM.
[26] Shuvendu K. Lahiri,et al. An Efficient Decision Procedure for UTVPI Constraints , 2005, FroCoS.
[27] Derek C. Oppen,et al. Complexity, Convexity and Combinations of Theories , 1980, Theor. Comput. Sci..
[28] Nikolaj Bjørner,et al. Generalized, efficient array decision procedures , 2009, 2009 Formal Methods in Computer-Aided Design.