Structural investigation of the cofactor-free chloroperoxidases.

The structures of cofactor-free haloperoxidases from Streptomyces aureofaciens, Streptomyces lividans, and Pseudomonas fluorescens have been determined at resolutions between 1.9 A and 1.5 A. The structures of two enzymes complexed with benzoate or propionate identify the binding site for the organic acids which are required for the haloperoxidase activity. Based on these complexes and on the structure of an inactive variant, a reaction mechanism is proposed for the halogenation reaction with peroxoacid and hypohalous acid as reaction intermediates. Comparison of the structures suggests that a specific halide binding site is absent in the enzymes but that hydrophobic organic compounds may fit into the active site pocket for halogenation at preferential sites.

[1]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[2]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[3]  J. Devereux,et al.  A comprehensive set of sequence analysis programs for the VAX , 1984, Nucleic Acids Res..

[4]  R. Kolter,et al.  A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. , 1992, Genes & development.

[5]  C. Sander,et al.  Errors in protein structures , 1996, Nature.

[6]  D. Schomburg,et al.  Crystallization and preliminary X-ray data of bromoperoxidase from Streptomyces aureofaciens ATCC 10762. , 1991, Journal of molecular biology.

[7]  C. Yanisch-Perron,et al.  Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. , 1985, Gene.

[8]  K. van Pée,et al.  Purification, characterization and comparison of two non-haem bromoperoxidases from Streptomyces aureofaciens ATCC 10762. , 1991, Journal of general microbiology.

[9]  Mike Carson,et al.  RIBBONS 2.0 , 1991 .

[10]  H. Laatsch,et al.  Marine Bakterien, VII. Enzymatische Bromierung von Pseudilinen und verwandten Heteroarylphenolen mit der Chlorperoxidase aus Streptomyces aureofacens Tü 24 , 1994 .

[11]  F. Lingens,et al.  A Metal-Ion- and Cofactor-independent Enzymatic Redox Reaction: Halogenation by Bacterial Nonheme Haloperoxidases†‡ , 1991 .

[12]  K. H. Kalk,et al.  Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase , 1994, Nature.

[13]  D. Ollis,et al.  Substrate-induced activation of dienelactone hydrolase: an enzyme with a naturally occurring Cys-His-Asp triad. , 1993, Protein engineering.

[14]  K. van Pée,et al.  Chloroperoxidase-encoding gene from Pseudomonas pyrrocinia: sequence, expression in heterologous hosts, and purification of the enzyme. , 1993, Gene.

[15]  R. Fenna,et al.  X-ray crystal structure of canine myeloperoxidase at 3 A resolution. , 1992, Journal of molecular biology.

[16]  S. Lam,et al.  The non-haem chloroperoxidase from Pseudomonas fluorescens and its relationship to pyrrolnitrin biosynthesis. , 1996, Microbiology.

[17]  R. Wever,et al.  Isolation procedure and some properties of the bromoperoxidase from the seaweed Ascophyllum nodosum , 1985 .

[18]  A. Messerschmidt,et al.  X-ray structure of a vanadium-containing enzyme: chloroperoxidase from the fungus Curvularia inaequalis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[20]  M. Picard,et al.  Metal-Free Bacterial Haloperoxidases as Unusual Hydrolases: Activation of H2O2 by the Formation of Peracetic Acid†‡ , 1997 .

[21]  F. S. Brown,et al.  Chloroperoxidase. II. Utilization of halogen anions. , 1966, The Journal of biological chemistry.

[22]  H. Sobek,et al.  The metal-ion-free oxidoreductase from Streptomyces aureofaciens has an α/β hydrolase fold , 1994, Nature Structural Biology.

[23]  R. Fenna,et al.  Structure of the green heme in myeloperoxidase. , 1995, Archives of biochemistry and biophysics.

[24]  M. Karplus,et al.  Crystallographic R Factor Refinement by Molecular Dynamics , 1987, Science.

[25]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[26]  H. Vilter Peroxidases from phaeophyceae: A vanadium(V)-dependent peroxidase from Ascophyllum nodosum , 1984 .

[27]  I. Pelletier,et al.  A catalytic triad is required by the non-heme haloperoxidases to perform halogenation. , 1995, Biochimica et biophysica acta.

[28]  I. Pelletier,et al.  Molecular cloning and sequencing of a non-haem bromoperoxidase gene from Streptomyces aureofaciens ATCC 10762. , 1992, Journal of general microbiology.

[29]  S. Godtfredsen,et al.  Lipase catalyzed synthesis of peroxycarboxylic acids and lipase mediated oxidations. , 1992 .

[30]  R. Wever,et al.  The chloroperoxidase from the fungus Curvularia inaequalis; a novel vanadium enzyme. , 1993, Biochimica et biophysica acta.

[31]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[32]  A. Ryabov,et al.  ‘Thermodynamic’ mechanism of catalysis by haloperoxidases , 1996, FEBS letters.

[33]  Joel L. Sussman,et al.  The α/β hydrolase fold , 1992 .

[34]  K. H. Kalk,et al.  Refined X-ray structures of haloalkane dehalogenase at pH 6.2 and pH 8.2 and implications for the reaction mechanism. , 1993, Journal of molecular biology.

[35]  T. Poulos,et al.  The crystal structure of chloroperoxidase: a heme peroxidase--cytochrome P450 functional hybrid. , 1995, Structure.

[36]  I. Pelletier,et al.  Cloning of a second non-haem bromoperoxidase gene from Streptomyces aureofaciens ATCC 10762: sequence analysis, expression in Streptomyces lividans and enzyme purification. , 1994, Microbiology.

[37]  L. Prade,et al.  Implications for the Catalytic Mechanism of the Vanadium-Containing Enzyme Chloroperoxidase from the Fungus Curvularia inaequalis by X-Ray Structures of the Native and Peroxide Form , 1997, Biological chemistry.

[38]  K. van Pée,et al.  Purification and characterization of a novel bacterial non-heme chloroperoxidase from Pseudomonas pyrrocinia. , 1988, The Journal of biological chemistry.

[39]  K. van Pée,et al.  Chloroperoxidase from Streptomyces lividans: isolation and characterization of the enzyme and the corresponding gene , 1994, Journal of bacteriology.