Generalized Lotka-Volterra Equations with Random, Nonreciprocal Interactions: The Typical Number of Equilibria.

We compute the typical number of equilibria of the Generalized Lotka-Volterra equations describing species-rich ecosystems with random, non-reciprocal interactions using the replicated Kac-Rice method. We characterize the multiple-equilibria phase by determining the average abundance and similaritybetween equilibria as a function of their diversity (i.e. of the number of coexisting species) and of the variability of the interactions. We show that linearly unstable equilibria are dominant, and that the typical number of equilibria differs with respect to the average number.

[1]  G. Biroli,et al.  Quenched complexity of equilibria for asymmetric Generalized Lotka-Volterra equations , 2023, 2304.05284.

[2]  Alexander van Meegen,et al.  Phase Space Analysis of Chaotic Neural Networks , 2022, 2210.07877.

[3]  Y. Fyodorov,et al.  The high-d landscapes paradigm: spin-glasses, and beyond , 2022, 2209.07975.

[4]  G. Bunin,et al.  Aging by Near-Extinctions in Many-Variable Interacting Populations. , 2022, Physical Review Letters.

[5]  J. Najim,et al.  Equilibrium and surviving species in a large Lotka–Volterra system of differential equations , 2022, Journal of Mathematical Biology.

[6]  S. Franz,et al.  Satisfiability transition in asymmetric neural networks , 2022, Journal of Physics A: Mathematical and Theoretical.

[7]  Joseph W. Baron,et al.  Non-Gaussian random matrices determine the stability of Lotka-Volterra communities , 2022, 2202.09140.

[8]  Y. Fyodorov,et al.  Counting equilibria in a random non-gradient dynamics with heterogeneous relaxation rates , 2021, Journal of Physics A: Mathematical and Theoretical.

[9]  Daniel R. Amor,et al.  Emergent phases of ecological diversity and dynamics mapped in microcosms , 2021, bioRxiv.

[10]  A. Turner,et al.  Local and collective transitions in sparsely-interacting ecological communities , 2021, bioRxiv.

[11]  Pierre Mergny,et al.  Stability of large complex systems with heterogeneous relaxation dynamics , 2021, Journal of Statistical Mechanics: Theory and Experiment.

[12]  G'erard Ben Arous,et al.  Landscape complexity beyond invariance and the elastic manifold , 2021, Communications on Pure and Applied Mathematics.

[13]  J. Bouchaud,et al.  A new spin on optimal portfolios and ecological equilibria , 2021, SSRN Electronic Journal.

[14]  Péter Bayer,et al.  Best-response dynamics in directed network games , 2021, Journal of Economic Theory.

[15]  Corrado Rainone,et al.  Low-frequency vibrational spectrum of mean-field disordered systems , 2020, Physical Review B.

[16]  G. Biroli,et al.  Properties of Equilibria and Glassy Phases of the Random Lotka-Volterra Model with Demographic Noise. , 2020, Physical review letters.

[17]  J. R. Ipsen,et al.  Nonlinearity-generated resilience in large complex systems. , 2020, Physical review. E.

[18]  Yan V. Fyodorov,et al.  Counting equilibria of large complex systems by instability index , 2020, Proceedings of the National Academy of Sciences.

[19]  D. S. Fisher,et al.  Stabilization of extensive fine-scale diversity by ecologically driven spatiotemporal chaos , 2020, Proceedings of the National Academy of Sciences.

[20]  A. Rossberg,et al.  Intrinsic ecological dynamics drive biodiversity turnover in model metacommunities , 2020, Nature Communications.

[21]  G. Parisi,et al.  Theory of Simple Glasses: Exact Solutions in Infinite Dimensions , 2020 .

[22]  M. Loreau,et al.  Fingerprints of High-Dimensional Coexistence in Complex Ecosystems , 2019, Physical Review X.

[23]  S. Franz,et al.  Rethinking Mean-Field Glassy Dynamics and Its Relation with the Energy Landscape: The Surprising Case of the Spherical Mixed p -Spin Model , 2019, Physical Review X.

[24]  Guy Bunin,et al.  Numerical implementation of dynamical mean field theory for disordered systems: application to the Lotka–Volterra model of ecosystems , 2019, Journal of Physics A: Mathematical and Theoretical.

[25]  J. Bouchaud,et al.  May's Instability in Large Economies , 2019, Physical review. E.

[26]  Tobias Galla,et al.  Dynamically evolved community size and stability of random Lotka-Volterra ecosystems , 2018, EPL (Europhysics Letters).

[27]  G. Biroli,et al.  Complex Energy Landscapes in Spiked-Tensor and Simple Glassy Models: Ruggedness, Arrangements of Local Minima, and Phase Transitions , 2018, Physical Review X.

[28]  Guy Bunin,et al.  Generic assembly patterns in complex ecological communities , 2018, Proceedings of the National Academy of Sciences.

[29]  G. Biroli,et al.  Marginally stable equilibria in critical ecosystems , 2017, New Journal of Physics.

[30]  H. Lischke,et al.  Finding all multiple stable fixpoints of n-species Lotka-Volterra competition models. , 2017, Theoretical population biology.

[31]  G. Bunin Ecological communities with Lotka-Volterra dynamics. , 2017, Physical review. E.

[32]  Nadav M Shnerb,et al.  Alternative steady states in ecological networks. , 2017, Physical review. E.

[33]  Y. Fyodorov Topology trivialization transition in random non-gradient autonomous ODEs on a sphere , 2016, 1610.04831.

[34]  Y. Fyodorov,et al.  Nonlinear analogue of the May−Wigner instability transition , 2015, Proceedings of the National Academy of Sciences.

[35]  Alex McAvoy,et al.  Asymmetric Evolutionary Games , 2015, PLoS Comput. Biol..

[36]  G. Parisi,et al.  The simplest model of jamming , 2015, 1501.03397.

[37]  D. Kessler,et al.  Generalized model of island biodiversity. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Matthieu Wyart,et al.  Marginal Stability in Structural, Spin, and Electron Glasses , 2014, 1406.7669.

[39]  Christopher P. Cesar Multiple Stable States in Natural Ecosystems , 2014 .

[40]  Y. Fyodorov High-Dimensional Random Fields and Random Matrix Theory , 2013, 1307.2379.

[41]  Michel Loreau,et al.  Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. , 2013, Ecology letters.

[42]  G. Wainrib,et al.  Topological and dynamical complexity of random neural networks. , 2012, Physical review letters.

[43]  R. Douady,et al.  Financial Crisis and Contagion: A Dynamical Systems Approach , 2011 .

[44]  Tobias Galla,et al.  Complex dynamics in learning complicated games , 2011, Proceedings of the National Academy of Sciences.

[45]  Si Tang,et al.  Stability criteria for complex ecosystems , 2011, Nature.

[46]  Antonio Auffinger,et al.  Random Matrices and Complexity of Spin Glasses , 2010, 1003.1129.

[47]  Marten Scheffer,et al.  Chaos in a long-term experiment with a plankton community , 2008, Nature.

[48]  Tobias Galla,et al.  Two-population replicator dynamics and number of Nash equilibria in matrix games , 2006, q-bio/0608032.

[49]  Jordi Bascompte,et al.  Asymmetric Coevolutionary Networks Facilitate Biodiversity Maintenance , 2006, Science.

[50]  T. Galla Random replicators with asymmetric couplings , 2005, cond-mat/0508174.

[51]  T. Lux,et al.  Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model , 2005 .

[52]  Y. Fyodorov Counting Stationary Points of Random Landscapes as a Random Matrix Problem , 2005, cond-mat/0507059.

[53]  Y. Fyodorov Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices. , 2004, Physical review letters.

[54]  V. Jansen,et al.  Complexity and stability revisited , 2003 .

[55]  M. Weigt,et al.  Entropy and typical properties of Nash equilibria in two-player games , 1999, cond-mat/9905076.

[56]  E. Marinari,et al.  On the stability of the mean-field spin glass broken phase under non-Hamiltonian perturbations , 1996, cond-mat/9611106.

[57]  G. Parisi,et al.  Structure of metastable states in spin glasses by means of a three replica potential , 1996, cond-mat/9611068.

[58]  L. Peliti,et al.  Glassy behaviour in disordered systems with nonrelaxational dynamics , 1996, cond-mat/9606060.

[59]  G. Parisi,et al.  Recipes for metastable states in spin glasses , 1995 .

[60]  Monasson,et al.  Structural glass transition and the entropy of the metastable states. , 1995, Physical review letters.

[61]  B. Cessac Increase in Complexity in Random Neural Networks , 1995 .

[62]  Michael Schreckenberg,et al.  Attractors in the fully asymmetric SK-model , 1992 .

[63]  Opper,et al.  Phase transition and 1/f noise in a game dynamical model. , 1992, Physical review letters.

[64]  Wolfgang Kinzel,et al.  Freezing transition in asymmetric random neural networks with deterministic dynamics , 1989 .

[65]  H. Rieger Solvable model of a complex ecosystem with randomly interacting species , 1989 .

[66]  Opper,et al.  Replicators with random interactions: A solvable model. , 1989, Physical review. A, General physics.

[67]  Sommers,et al.  Spectrum of large random asymmetric matrices. , 1988, Physical review letters.

[68]  Sompolinsky,et al.  Dynamics of spin systems with randomly asymmetric bonds: Langevin dynamics and a spherical model. , 1987, Physical review. A, General physics.

[69]  E. Gardner,et al.  An Exactly Solvable Asymmetric Neural Network Model , 1987 .

[70]  S. Solla,et al.  Memory networks with asymmetric bonds , 1987 .

[71]  S. Amari,et al.  Characteristics of Random Nets of Analog Neuron-Like Elements , 1972, IEEE Trans. Syst. Man Cybern..

[72]  ROBERT M. MAY,et al.  Will a Large Complex System be Stable? , 1972, Nature.

[73]  Scott A. Boorman,et al.  On the Volterra and Other Nonlinear Models of Interacting Populations. N. S. Goel, S. C. Maitra, and E. W. Montroll. Academic Press, New York, 1971. viii, 146 pp., illus. $5.50. Reviews of Modern Physics Monographs , 1972 .

[74]  Reimer Kühn,et al.  Asymmetric neural networks and the process of learning , 2016 .

[75]  P. Biscari Replica Symmetry Breaking in the Random Replicant Model , 1995 .