Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations.

Magnesium (Mg) and its alloys have been intensively studied as biodegradable implant materials, where their mechanical properties make them attractive candidates for orthopaedic applications. There are several commonly used in vitro tests, from simple mass loss experiments to more complex electrochemical methods, which provide information on the biocorrosion rates and mechanisms. The various methods each have their own unique benefits and limitations. Inappropriate test setup or interpretation of in vitro results creates the potential for flawed justification of subsequent in vivo experiments. It is therefore crucial to fully understand the correct usages of each experiment and the factors that need to be considered before drawing conclusions. This paper aims to elucidate the main benefits and limitations for each of the major in vitro methodologies that are used in examining the biodegradation behaviour of Mg and its alloys.

[1]  G. Song,et al.  Influence of Microstructure on Corrosion of As‐cast ZE41 , 2008 .

[2]  Y. Estrin,et al.  Corrosion of Pure Mg as a Function of Grain Size and Processing Route , 2008 .

[3]  D. Mantovani,et al.  In Vitro Bioactivity Assessment of Metallic Magnesium , 2006 .

[4]  H. Uhlig,et al.  Thermodynamics: Pourbaix Diagrams , 2008 .

[5]  E. Zhang,et al.  Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application , 2009 .

[6]  H. Somekawa,et al.  Polarization Behavior of Pure Magnesium under a Controlled Flow in a NaCl Solution , 2008 .

[7]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[8]  M. Staiger,et al.  Bone-like matrix formation on magnesium and magnesium alloys , 2008, Journal of materials science. Materials in medicine.

[9]  H. Somekawa,et al.  Influence of pH and flow on the polarisation behaviour of pure magnesium in borate buffer solutions , 2008 .

[10]  M. Störmer,et al.  Magnesium alloys as implant materials--principles of property design for Mg-RE alloys. , 2010, Acta biomaterialia.

[11]  J. Kruger,et al.  Corrosion of magnesium , 1993 .

[12]  G. Tang,et al.  Electrochemical Behavior Al2O3 ∕ Al Coated Surgical AZ91 Magnesium Alloy in Simulated Body Fluids , 2008 .

[13]  G. Song Recent Progress in Corrosion and Protection of Magnesium Alloys , 2005 .

[14]  D. Mills,et al.  An introduction to electrochemical corrosion testing for practicing engineers and scientists: By W. Stephen Tait, published by PairODocs Publications, Racine, WI, USA , 1995 .

[15]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[16]  H. Tsubakino,et al.  Improvement of corrosion resistance of magnesium alloys by vapor deposition , 2001 .

[17]  Qiuming Peng,et al.  Preparation and properties of high purity Mg-Y biomaterials. , 2010, Biomaterials.

[18]  M. Wong,et al.  Stearic acid coating on magnesium for enhancing corrosion resistance in Hanks' solution , 2010 .

[19]  Ke Yang,et al.  Study of Biodegradation of Pure Magnesium , 2007 .

[20]  Berend Denkena,et al.  Degradable implants made of magnesium alloys , 2005 .

[21]  P. Uggowitzer,et al.  The influence of heat treatment and plastic deformation on the bio-degradation of a Mg-Y-RE alloy. , 2009, Journal of biomedical materials research. Part A.

[22]  D. StJohn,et al.  Corrosion resistance of aged die cast magnesium alloy AZ91D , 2004 .

[23]  Berend Denkena,et al.  Biocompatible Magnesium Alloys as Absorbable Implant Materials – Adjusted Surface and Subsurface Properties by Machining Processes , 2007 .

[24]  R. Battino,et al.  Low-pressure solubility of gases in liquid water , 1977 .

[25]  W. Mueller,et al.  Degradation of magnesium and its alloys: dependence on the composition of the synthetic biological media. , 2009, Journal of biomedical materials research. Part A.

[26]  R. Raman,et al.  Evaluating the stress corrosion cracking susceptibility of Mg–Al–Zn alloy in modified-simulated body fluid for orthopaedic implant application , 2008 .

[27]  P. Liaw,et al.  Bio-corrosion study on zirconium-based bulk-metallic glasses , 2009 .

[28]  E. Ghali,et al.  Testing of general and localized corrosion of magnesium alloys: A critical review , 2004 .

[29]  Andrej Atrens,et al.  Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation , 2010 .

[30]  Guohua Wu,et al.  The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D , 2005 .

[31]  M. Störmer,et al.  Biodegradable magnesium-hydroxyapatite metal matrix composites. , 2007, Biomaterials.

[32]  Sasha Omanovic,et al.  Electrochemical studies of the adsorption behavior of serum proteins on titanium , 2000 .

[33]  Y. Estrin,et al.  Bio-corrosion of a magnesium alloy with different processing histories , 2008 .

[34]  Akiko Yamamoto,et al.  Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro , 2009 .

[35]  T. Woodfield,et al.  In-vitro dissolution of magnesium-calcium binary alloys: clarifying the unique role of calcium additions in bioresorbable magnesium implant alloys. , 2010, Journal of biomedical materials research. Part B, Applied biomaterials.

[36]  G. Song,et al.  The anodic dissolution of magnesium in chloride and sulphate solutions , 1997 .

[37]  Liu Chenglong,et al.  Comparison of calcium phosphate coatings on Mg-Al and Mg-Ca alloys and their corrosion behavior in Hank's solution , 2010 .

[38]  G. Song,et al.  Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance , 2003 .

[39]  Ke Yang,et al.  Effect of Y on the bio-corrosion behavior of extruded Mg–Zn–Mn alloy in Hank's solution , 2010 .

[40]  M. Wei,et al.  Corrosion process of pure magnesium in simulated body fluid , 2008 .

[41]  Ke Yang,et al.  In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. , 2009, Biomaterials.

[42]  Yong Han,et al.  Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds , 2008 .

[43]  Yufeng Zheng,et al.  Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg–Ca, AZ31, AZ91 alloys , 2009, Biomedical materials.

[44]  S. Virtanen,et al.  Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids. , 2008, Journal of biomedical materials research. Part A.

[45]  W. Ding,et al.  Effect of heat treatment on corrosion and electrochemical behaviour of Mg–3Nd–0.2Zn–0.4Zr (wt.%) alloy , 2007 .

[46]  Yufeng Zheng,et al.  The development of binary Mg-Ca alloys for use as biodegradable materials within bone. , 2008, Biomaterials.

[47]  陈君,et al.  Electrochemical behavior of magnesium alloys in simulated body fluids , 2007 .

[48]  M. Liu,et al.  Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91 , 2008 .

[49]  W. Zhou,et al.  Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid , 2010 .

[50]  Ke Yang,et al.  Fluoride treatment and in vitro corrosion behavior of an AZ31B magnesium alloy , 2010 .

[51]  I. M. Piskarev,et al.  Establishment of the redox potential of water saturated with hydrogen , 2010 .

[52]  G. Tang,et al.  Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 magnesium alloy in simulated body fluid , 2007 .

[53]  X. M. Zhang,et al.  In vitro corrosion degradation behaviour of Mg–Ca alloy in the presence of albumin , 2010 .

[54]  S. Bender,et al.  Corrosion and corrosion testing of magnesium alloys , 2007 .

[55]  V. Shanov,et al.  Biodegradable Mg corrosion and osteoblast cell culture studies , 2009 .

[56]  G. S. Duffó,et al.  Development of an Artificial Saliva Solution for Studying the Corrosion Behavior of Dental Alloys , 2004 .

[57]  M. Villegas,et al.  Electrochemical study of tailored sol–gel thin films as pre-treatment prior to organic coating for AZ91 magnesium alloy , 2010 .

[58]  M. Dargusch,et al.  Influence of microstructure on the corrosion of diecast AZ91D , 1998 .

[59]  Ke Yang,et al.  Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application , 2009 .

[60]  W. Müller,et al.  Magnesium and its Alloys as Degradable Biomaterials. Corrosion Studies Using Potentiodynamic and EIS Electrochemical Techniques , 2007 .

[61]  Yingwei Song,et al.  Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid , 2009 .

[62]  Guang-Ling Song,et al.  Control of biodegradation of biocompatable magnesium alloys , 2007 .

[63]  Y. Wan,et al.  Preparation and characterization of a new biomedical magnesium–calcium alloy , 2008 .

[64]  Andrej Atrens,et al.  An Hydrogen Evolution Method for the Estimation of the Corrosion Rate of Magnesium Alloys , 2013 .

[65]  M. Gibson,et al.  On the corrosion of binary magnesium-rare earth alloys , 2009 .

[66]  P. Uggowitzer,et al.  MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. , 2009, Nature materials.

[67]  S. Guan,et al.  In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. , 2010, Acta biomaterialia.

[68]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[69]  R. Gopalakrishnan,et al.  Growth and characterization of glycinium oxalate (GOX) single crystals , 2008 .

[70]  G. Song,et al.  An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing , 2009 .

[71]  Yang Song,et al.  Research on an Mg-Zn alloy as a degradable biomaterial. , 2010, Acta biomaterialia.

[72]  P. Uggowitzer,et al.  Corrosion behaviour of an Mg–Y–RE alloy used in biomedical applications studied by electrochemical techniques , 2008 .

[73]  B. Elsener,et al.  Characterization of implant materials in fetal bovine serum and sodium sulfate by electrochemical impedance spectroscopy. II. Coarsely sandblasted samples. , 2003, Journal of biomedical materials research. Part A.

[74]  In-Seop Lee,et al.  Calcium phosphate coating on magnesium alloy for modification of degradation behavior , 2008 .

[75]  Y. Zheng,et al.  In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy. , 2010, Acta biomaterialia.

[76]  O. Lunder,et al.  Corrosion morphologies on magnesium alloy AZ 91 , 1994 .

[77]  R. Raman,et al.  In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. , 2008, Biomaterials.

[78]  Yunchang Xin,et al.  Corrosion behavior of ZrN/Zr coated biomedical AZ91 magnesium alloy , 2009 .

[79]  Ji-Young Lee,et al.  Influence of Ca on the corrosion properties of magnesium for biomaterials , 2008 .

[80]  Shizhe Song,et al.  A Possible Biodegradable Magnesium Implant Material , 2007 .

[81]  Hong Wang,et al.  Magnesium and Magnesium Alloys as Degradable Metallic Biomaterials , 2008 .

[82]  M. Escudero,et al.  Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. , 2010, Acta biomaterialia.

[83]  Xuelin Zhang,et al.  Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density , 2009 .

[84]  H. Tsubakino,et al.  Corrosion rate of magnesium and its alloys in buffered chloride solutions , 2002 .

[85]  Chenglong Liu,et al.  Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids , 2007 .

[86]  T. Aizawa,et al.  Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank's solution , 2001 .

[87]  G. Song,et al.  Improved corrosion resistance of AZ91D magnesium alloy by an aluminium-alloyed coating , 2006 .

[88]  M. Störmer,et al.  Correlation between texture and corrosion properties of magnesium coatings produced by PVD , 2008 .

[89]  Ke Yang,et al.  Formation by ion plating of Ti-coating on pure Mg for biomedical applications , 2005 .

[90]  M. Wei,et al.  Improve corrosion resistance of magnesium in simulated body fluid by dicalcium phosphate dihydrate coating , 2009 .

[91]  C. Weber,et al.  The negative difference effect of magnesium and of the AZ91 alloy in chloride and stannate-containing solutions , 2010 .

[92]  Nick Birbilis,et al.  Limitations in microelectrochemical capillary cell testing and transformation of electrochemical transients for acquisition of microcell impedance data , 2005 .

[93]  W. Mueller,et al.  Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. , 2010, Acta biomaterialia.

[94]  Frank Witte,et al.  In vitro and in vivo corrosion measurements of magnesium alloys. , 2006, Biomaterials.

[95]  D. Vojtech Investigation of magnesium-based alloys for biomedical applications , 2006 .

[96]  Yu‐Chan Kim,et al.  Effects of impurities on the biodegradation behavior of pure magnesium , 2009 .

[97]  L. Lefebvre,et al.  Surface and Corrosion Electrochemical Characterization of Titanium Foams for Implant Applications , 2006 .

[98]  Lei Yang,et al.  Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application , 2008 .

[99]  Ke Yang,et al.  Phosphating treatment and corrosion properties of Mg–Mn–Zn alloy for biomedical application , 2009, Journal of materials science. Materials in medicine.

[100]  A. Lasia Electrochemical Impedance Spectroscopy and its Applications , 2014 .

[101]  M. Stern,et al.  Electrochemical Polarization I . A Theoretical Analysis of the Shape of Polarization Curves , 1957 .

[102]  T. M. Nahir,et al.  Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed Edited by Evgenij Barsoukov (Texas Instruments Inc.) and J. Ross Macdonald (University of North Carolina, Chapel Hill). John Wiley & Sons, Inc.: Hoboken, NJ. 2005. xvii + 596 pp. $125.00. ISBN 0471-64749-7. , 2005 .

[103]  Ben Fabry,et al.  Effect of surface pre-treatments on biocompatibility of magnesium. , 2009, Acta biomaterialia.

[104]  D. StJohn,et al.  The electrochemical corrosion of pure magnesium in 1 N NaCl , 1997 .

[105]  M. Liu,et al.  Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41 , 2008 .

[106]  Karl Ulrich Kainer,et al.  Corrosion of AZ 91 Secondary Magnesium Alloy , 2005 .

[107]  N. Birbilis,et al.  Performance-driven design of Biocompatible Mg alloys , 2011 .

[108]  Sachio Yamamoto,et al.  Solubility of hydrogen in water, sea water, and sodium chloride solutions , 1974 .

[109]  Yong Wang,et al.  Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid , 2004 .

[110]  R. Akid,et al.  Scratch-resistant anticorrosion sol–gel coating for the protection of AZ31 magnesium alloy via a low temperature sol–gel route , 2010 .

[111]  M. Wong,et al.  Improvement of corrosion resistance of pure magnesium in Hanks’ solution by microarc oxidation with sol–gel TiO2 sealing , 2009 .

[112]  Changsong Dai,et al.  Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid , 2009 .

[113]  Yang Ke,et al.  Preliminary study of biodegradation of AZ31B magnesium alloy , 2007 .

[114]  C. Xie,et al.  In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg–Zn alloy , 2009 .

[115]  H. C. Man,et al.  Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants , 2007 .

[116]  Y. Huang,et al.  Influence of zinc ion implantation on surface nanomechanical performance and corrosion resistance of biomedical magnesium–calcium alloys , 2008 .

[117]  E. Han,et al.  Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application , 2008 .

[118]  F. Cheng,et al.  Effect of pH on the in vitro corrosion rate of magnesium degradable implant material , 2010 .

[119]  P. Chu,et al.  Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin , 2007 .

[120]  K. Ikeuchi,et al.  Surface modification of magnesium by NaHCO3 and corrosion behavior in Hank's solution for new biomaterial applications , 2001 .

[121]  F. Cui,et al.  Characterization and Degradation Study of Calcium Phosphate Coating on Magnesium Alloy Bone Implant In Vitro , 2009, IEEE Transactions on Plasma Science.

[122]  A. Fekry,et al.  Electrochemical corrosion behavior of magnesium and titanium alloys in simulated body fluid , 2009 .

[123]  David K. Gosser,et al.  Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms , 1993 .

[124]  Dietmar Schranz,et al.  Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn , 2006, Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions.

[125]  A. Coy,et al.  Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl , 2008 .

[126]  S. G. Roscoe,et al.  Electrochemical Studies of the Adsorption Behavior of Bovine Serum Albumin on Stainless Steel , 1999 .

[127]  Keith D K Luk,et al.  A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. , 2010, Biomaterials.

[128]  G. Song,et al.  The Effect of Pre‐Processing and Grain Structure on the Bio‐Corrosion and Fatigue Resistance of Magnesium Alloy AZ31 , 2007 .

[129]  D. Bormann,et al.  [Influence of different surface machining treatments of resorbable implants made from different magnesium-calcium alloys on their degradation--a pilot study in rabbit models]. , 2006, DTW. Deutsche tierarztliche Wochenschrift.

[130]  Xiaoliang Cheng,et al.  Corrosion behavior of titanium in the presence of calcium phosphate and serum proteins. , 2005, Biomaterials.

[131]  L. Tamisier,et al.  Study of the adsorption of albumin on a platinum rotating disk electrode using impedance measurements , 1988 .

[132]  Frank Witte,et al.  The history of biodegradable magnesium implants: a review. , 2010, Acta biomaterialia.

[133]  C. Qiu,et al.  Corrosion behavior of Zr-based bulk metallic glasses in different artificial body fluids , 2006 .

[134]  D. StJohn,et al.  Corrosion of magnesium alloys in commercial engine coolants , 2005 .

[135]  D. Young,et al.  Subsurface microstructural changes in a cast heat resisting alloy caused by high temperature corrosion , 2010 .

[136]  A. Atrens,et al.  An innovative specimen configuration for the study of Mg corrosion , 2011 .

[137]  M. Gibson,et al.  Corrosion behaviour of Mg-alloy AZ91E with atypical alloying additions , 2009 .

[138]  K. Vince,et al.  Biodegradable surgical implants based on magnesium alloys – A review of current research , 2009 .

[139]  M. G. Seelig A STUDY OF MAGNESIUM WIRE AS AN ABSORBABLE SUTURE AND LIGATURE MATERIAL , 1924 .

[140]  Yufeng Zheng,et al.  In vitro corrosion and biocompatibility of binary magnesium alloys. , 2009, Biomaterials.

[141]  V. I. Baranenko,et al.  Solubility of hydrogen in water in a broad temperature and pressure range , 1989 .

[142]  Frank Witte,et al.  Progress and Challenge for Magnesium Alloys as Biomaterials , 2008 .

[143]  Q. Jiang,et al.  High corrosion-resistance nanocrystalline Ni coating on AZ91D magnesium alloy , 2006 .

[144]  H. Uhlig,et al.  Corrosion and corrosion control , 1971 .

[145]  Nick Birbilis,et al.  A survey of bio-corrosion rates of magnesium alloys , 2010 .