A Geometric Preferential Attachment Model of Networks

We study a random graph Gn that combines certain aspects of geometric random graphs and preferential attachment graphs. The vertices of Gn are n sequentially generated points x 1, x 2, . . . , x n chosen uniformly at random from the unit sphere in ℝ3. After generating xt , we randomly connect that point to m points from those points in x 1, x 2, . . . , xt -1 that are within distance r of xt . Neighbors are chosen with probability proportional to their current degree, and a parameter a biases the choice towards self loops. We show that if m is sufficiently large, if r ≥ ln n/n 1/2-β for some constant β, and if α > 2, then with high probabilty (whp) at time n the number of vertices of degree k follows a power law with exponent α + 1. Unlike the preferential attachment graph, this geometric preferential attachment graph has small separators, similar to experimental observations of [Blandford et al. 03]. We further show that if m ≥ K ln n, for K sufficiently large, then Gn is connected and has diameter O(ln n/r) whp.

[1]  Deryk Osthus,et al.  Popularity based random graph models leading to a scale-free degree sequence , 2004, Discret. Math..

[2]  Paul Erdös,et al.  On random graphs, I , 1959 .

[3]  D. Watts,et al.  Small Worlds: The Dynamics of Networks between Order and Randomness , 2001 .

[4]  Eli Upfal,et al.  The Web as a graph , 2000, PODS.

[5]  Christos H. Papadimitriou,et al.  On the Eigenvalue Power Law , 2002, RANDOM.

[6]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[7]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[8]  Michael Mitzenmacher,et al.  A Brief History of Generative Models for Power Law and Lognormal Distributions , 2004, Internet Math..

[9]  Fan Chung Graham,et al.  A random graph model for massive graphs , 2000, STOC '00.

[10]  Ravi Kumar,et al.  Trawling the Web for Emerging Cyber-Communities , 1999, Comput. Networks.

[11]  G. Yule,et al.  A Mathematical Theory of Evolution Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .

[12]  Amin Saberi,et al.  On certain connectivity properties of the Internet topology , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[13]  F. Chung,et al.  Eigenvalues of Random Power law Graphs , 2003 .

[14]  Mihaela Enachescu,et al.  Variations on Random Graph Models for the Web , 2001 .

[15]  Christian Borgs,et al.  Competition-Induced Preferential Attachment , 2004, ICALP.

[16]  Christos H. Papadimitriou,et al.  Heuristically Optimized Trade-Offs: A New Paradigm for Power Laws in the Internet , 2002, ICALP.

[17]  Béla Bollobás,et al.  Degree Distribution of the FKP Network Model , 2003, ICALP.

[18]  Jon M. Kleinberg,et al.  The Web as a Graph: Measurements, Models, and Methods , 1999, COCOON.

[19]  Yamir Moreno,et al.  Local versus global knowledge in the Barabási-Albert scale-free network model. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Béla Bollobás,et al.  Mathematical results on scale‐free random graphs , 2005 .

[21]  Béla Bollobás,et al.  Coupling Scale-Free and Classical Random Graphs , 2004, Internet Math..

[22]  Eli Upfal,et al.  Stochastic models for the Web graph , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[23]  Béla Bollobás,et al.  The Diameter of a Scale-Free Random Graph , 2004, Comb..

[24]  Alan M. Frieze,et al.  A General Model of Undirected Web Graphs , 2001, ESA.

[25]  B. Hayes Graph Theory in Practice: Part II , 2000, American Scientist.

[26]  Guy E. Blelloch,et al.  Compact representations of separable graphs , 2003, SODA '03.

[27]  Mathew D. Penrose,et al.  Random Geometric Graphs , 2003 .

[28]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[29]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[30]  H. Simon,et al.  ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS , 1955 .

[31]  N. Alon,et al.  The Probabilistic Method, Second Edition , 2000 .

[32]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[33]  F. Chung,et al.  Spectra of random graphs with given expected degrees , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Linyuan Lu,et al.  Random evolution in massive graphs , 2001 .

[35]  Béla Bollobás,et al.  The degree sequence of a scale‐free random graph process , 2001, Random Struct. Algorithms.